

Open Loyalty Documentation

Open Loyalty [https://openloyalty.io] is a technology for loyalty solutions. It is geared towards starting new loyalty projects
based on the Symfony Framework [http://symfony.com].

Note

This documentation assumes you have a working knowledge of the Symfony
Framework. If you’re not familiar with Symfony, please start by
reading the Quick Tour [http://symfony.com/doc/current/quick_tour] from the Symfony documentation.

The User Guide

The Open Loyalty User Guide is a complete documentation for users.

The REST API Reference

The API Guide covers the REST API of the Open Loyalty platform.

	Introduction to the Open Loyalty REST API

	Authorization

	Admin Users API

	Analytics API

	Audit API

	Reward Campaigns API

	Customer API

	Customer Campaign API

	Customer Level API

	Customer Earning API

	Add label to Customer

	Customer Points transfers

	Earning Rule

	Invitation

	Level API

	Points transfers

	POS API

	Security

	Seller API

	Segment API

	Settings API

	Store API

	Transactions

	Utility API

	Campaigns categories API

	ACL API

	Event API

	Webhooks

Developer Documentation

The Developer’s Guide contains information for developers who want to know more about
Open Loyalty architecture and the concepts used within. This guide helps developers to understand how Open Loyalty works.

	/developer/introduction

	/developer/installation

	/developer/architecture

	/developer/configuration

	/developer/points

The Cookbook

The Open Loyalty Cookbook is a collection of solution articles helping you with some
specific, narrow problems.

	How to create a new bundle

	How to add a new API endpoint

	Creating new Commands and Handlers

	How to backup elasticsearch

	How to change the domain

	How to change main language

	How to schedule transactions import

	How to work with queues

	How to add a new field to an entity

	How to add a new tab in the admin panel

	How to enable LDAP authorization

	How to create a translatable field

	Open Loyalty FAQ

The User Guide

Congratulations on your new Loyalty Platform. This manual is intended to help you get the most out of your Loyalty program in your day-to-day use.

This guide answers the “why, where, and how” questions that most users have when learning to use Open Loyalty platform. You’ll find lots of step-by-step instructions, screenshots, and examples.

[image: Open Loyalty platform]
Revel Systems offers businesses the ability to customize their loyalty and rewards programs. This feature gives businesses the power to create engaging programs that generate customer loyalty and increase sales. Through this Platform, you can easily manage the rewards and loyalty points to be provided to your customers. Thereafter, the customers can earn or redeem the points as per the rules defined by you.

Getting started

The Getting started section introduces your Loyalty Platform Admin, and walks you through the basic configuration settings. You’ll get an overview of the resources that are available to you as an Admin of the Open Loyalty and how to log into your Admin account. Finally, you’ll learn the concepts of loyalty platform and configuration scope, and establish best practices for project standards and requirements.

Customers

The Customers section becomes you familiar with the customer account menu, and learn to manage customer accounts according to adding, deleting and modifying data. You will also learn how to create customer account that can be referenced in customer levels and segments.

Levels

In the Levels section of the guide,you will learn how to create and use customer levels to create opportunities for customer engagement and how to set up targeted discounts and rewards based on a variety of conditions. The more points customers receive, the higher level they’ll reach. And, the higher level of loyalty, the more rewards customers will get.

You can use levels to offer customer incentives, such as:

	assigned a fixed reward to the particular level. The higher level – the better reward.

	offer limited in time special rewards for customer assigned to particular level

Points transfers

The points transfers section of the guide walks you through the basic points transfer information. You will learn how to add and manage transfer of loyalty points records and finally better understand all terms related to points transfer.

Transactions

In the Transaction section of the guide, you’ll learn how to manage all aspects of the transaction, including matching transaction with customer and better understanding of terms and transaction process.

Earning rules

The Earning rules section of the guide provides an overview of the ways for customers to earn points – the engine of your Loyalty Program. You’ll learn how to create and manage Earning Rule to accomplish many things, from rewarding high-value customers, to stopping points earning all together.

POS

In the POS section of the guide, you’ll learn how to set up a stores – online and offline, and manage their data.

Merchants

The Merchants section of the guide provides an overview of the all merchants working in yours stores and involve with Loyalty Program. You’ll learn how to add and manage merchant data, including assigning to particular store.

Segments

In the Segments section of the guide, you’ll become familiar with the customer segmentation feature, and learn to configure customer segments according to your preference. You will also learn how to create and assigned customers to segments, that can be referenced in rewards, earning rules, levels etc.

Reward Campaigns

In the Reward campaigns section of the guide, you’ll familiar with creating and managing rewards available within your Loyalty Program. You will learn what type of rewards can be choose, how to assigned reward to specify customers, define activity time and manage reward details. You will also learn how to verify which rewards have been already redeemed and by which customers.

Indices and tables

	Index

The REST API Reference

	Introduction to the Open Loyalty REST API

	Authorization

	Admin Users API

	Analytics API

	Audit API

	Reward Campaigns API

	Customer API

	Customer Campaign API

	Customer Level API

	Customer Earning API

	Add label to Customer

	Customer Points transfers

	Earning Rule

	Invitation

	Level API

	Points transfers

	POS API

	Security

	Seller API

	Segment API

	Settings API

	Store API

	Transactions

	Utility API

	Campaigns categories API

	ACL API

	Event API

	Webhooks

Introduction to the Open Loyalty REST API

This part of the documentation is about the RESTful JSON API for the Open Loyalty platform.

Note

To use this documentation, you should have some basic knowledge of REST APIs [http://symfony.com/doc/current/quick_tour].

Get current version

To retrieve the current version of OpenLoyalty, you need to call the /api/ endpoint with the GET method.

Definition

GET /api/

Example

curl http://localhost:8181/api/ \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/json" \

Example Response

STATUS: 200 OK

{
 "name": "OpenLoyalty",
 "version": "4.2.0"
}

Health check endpoint

The OpenLoyalty API provides a special endpoint for checking application status. The endpoint verifies the status of critical services
like database, Elasticsearch, etc. Calling the /api/healthcheck endpoint with the GET method returns 204 code when
all services are working correctly. Oherwise, it returns 503 with details about the status of each service.

Definition

GET /api/healthcheck

Example

curl http://localhost:8181/api/healthcheck \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/json" \

Example Response

STATUS: 503 Unavailable

[
 {
 "name": "PostgreSQL",
 "status": "Problem",
 "message": "An exception occurred in driver: SQLSTATE[08006] [7] could not translate host name \"db\" to address: Name or service not known"
 },
 {
 "name": "Elasticsearch",
 "status": "OK"
 },
 {
 "name": "RabbitMQ",
 "status": "OK"
 }
]

Elasticsearch “Result window is too large”

The message simply means that you tried to show results located after the 10,000th position. 10,000 is a limit and can be found in the .env file.

Authorization

This part of the documentation is about the authorization process in the Open Loyalty platform through the API. Open Loyalty uses two types of
authorization: JSON Web Tokens and permanent API Tokens. In order to check this configuration, please set up your local
copy of the Open Loyalty platform and change localhost to your address.

LDAP

By default Open Loyalty authenticates admin users using database. This can be changed by set environment
ADMIN_LDAP_AUTHORIZATION_ENABLED to true.

Note

You can enable two authorization methods at the same time but this is not recommended.

JSON Web Token

Open Loyalty has the JWT authorization configured.

To learn what a JSON Web Token is and how it works, check out Introduction to JSON Web Tokens <https://jwt.io/introduction/>

Note

The JWT authorization process is used by frontend applications.

Obtain an access token

Send a request with the following parameters:

Definition

POST /api/admin/login_check

POST /api/{storeCode}/customer/login_check

	Parameter

	Parameter type

	Description

	_username

	request

	For <user_type>=admin use username, for <user_type>=customer use e-mail address or loyalty card number or phone number

	_password

	request

	User password

Note

Each user type has different permissions to call API methods.

Example

curl http://localhost:8181/api/admin/login_check
 -H 'Content-Type: application/json;charset=UTF-8'
 -H 'Accept: application/json, text/plain, */*'
 --data-binary '{"_username":"admin","_password":"open"}'

Example Response

{
 "token":"eyJhbGciOiJSUzI1NiIsInR5cCI6...",
 "refresh_token":"0558f8bb29948c4e54c443f..."
}

Note

Token and refresh token have been shorten for the documentation purpose by suspension points.

Using JSON Web Token

Add authorization header to each request

Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6...

You can now access any API method you want under the /api prefix.

Example

curl http://localhost:8181/api/admin/analytics/customers \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Permanent token

A permanent token is a constant string value assigned to the admin account in Open Loyalty or a constant value which
is not related to a real user and is stored in the configuration.

Creating a permanent token in the configuration

In order to activate a configuration access token, you need to add to a Symfony config value

parameters:
 master_api_key: 371BBCF483524FD5A837B4095F7FBE96AFD46B678C0F025D5EED0316FD5D7762

Creating a permanent user token

Send a request with the following parameters

Definition

POST /api/admin/data

	Parameter

	Parameter type

	Description

	admin[firstName]

	request

	First name

	admin[lastName]

	request

	Last name

	admin[phone]

	request

	Phone number

	admin[email]

	request

	E-mail address (required)

	admin[plainPassword]

	request

	Plain password (required if admin[external]=0

	admin[external]

	request

	Allows to define permanent token. Set 1 if true, otherwise 0

	admin[apiKey]

	request

	Permanent token (required if admin[external]=1

	admin[isActive]

	request

	Set account active. Set 1 if active, otherwise 0

Example

curl http://localhost:8181/api/admin/data \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "admin[email]=administrator@example.com" \
 -d "admin[external]=1" \
 -d "admin[apiKey]=customPermanentToken" \
 -d "admin[isActive]=1"

Example Response

STATUS: 200 OK

Example Fail Response

STATUS: 400 Bad Request

{
 "form": {
 "children": {
 "firstName": {},
 "lastName": {},
 "phone": {},
 "email": {
 "errors": [
 "This value is already used."
]
 },
 "plainPassword": {},
 "external": {},
 "apiKey": {
 "errors": [
 "This value should not be blank."
]
 },
 "isActive": {}
 }
 },
 "errors": []
}

Create a permanent user token using the Admin Cockpit

Create a new account in the administration panel.

Note

The administration panel is available at http://localhost:8182/
To log in, use the standard username “admin” and password “open”.

Mark a new account as “external” and provide an “Api key”.

[image: ../_images/permanent_token_setting.png]

How to use a permanent token

A permanent token can be provided using headers or a query parameter.

Using headers

curl http://localhost:8181/api/admin \
 -X "GET" -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "X-AUTH-TOKEN: customPermanentToken"

Using a query parameter

curl http://localhost:8181/api/admin?auth_token=customPermanentToken \
 -X "GET" -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \

Admin Users API

These endpoints will allow you to easily manage admin users.

Creating an Admin User

To create a new admin user, you need to call the /api/admin/data endpoint with the POST method.

Definition

POST /api/admin/data

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	admin[firstName]

	request

	First name

	admin[lastName]

	request

	Last name

	admin[phone]

	request

	Phone number

	admin[email]

	request

	E-mail address (required)

	admin[plainPassword]

	request

	Plain password (required if admin[external]=0

	admin[external]

	request

	Allows to define permanent token. Set 1 if true, otherwise 0

	admin[apiKey]

	request

	Permanent token (required if admin[external]=1

	admin[isActive]

	request

	Set account active. Set 1 if active, otherwise 0

	admin[roles][]

	request

	Role IDs assigned to this administrator (max 1 role)

Example

To create a new admin user, use the method below:

curl http://localhost:8181/api/admin/data \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "admin[email]=administrator@example.com" \
 -d "admin[external]=0" \
 -d "admin[plainPassword]=password1234" \
 -d "admin[isActive]=1" \
 -d "admin[roles][0]=37"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

Example

curl http://localhost:8181/api/admin/data \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 400 Bad Request

{
 "form": {
 "children": {
 "firstName": {},
 "lastName": {},
 "phone": {},
 "email": {},
 "plainPassword": {},
 "external": {},
 "apiKey": {},
 "isActive": {}
 }
 },
 "errors": []
}

Getting a Single Admin User

To retrieve the details of an admin user, you need to call the /api/admin/data/{admin} endpoint with the GET method.

Definition

GET /api/admin/data/<admin>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<admin>

	query

	Id of the admin user

Example

To see the details of the admin user with admin = 22200000-0000-474c-b092-b0dd880c07e2, use the method below:

curl http://localhost:8181/api/admin/data/22200000-0000-474c-b092-b0dd880c07e2 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "id": "22200000-0000-474c-b092-b0dd880c07e2",
 "username": "admin",
 "isActive": true,
 "createAt": "2017-09-21T13:54:04+0200",
 "email": "admin@example.com",
 "external": false,
 "dtype": "admin"
}

Note

The 22200000-0000-474c-b092-b0dd880c07e2 id is an example value. Your value may be different.
Check the list of all admin users if you are not sure which id should be used.

Collection of Admin Users

To retrieve a paginated list of admin users, you need to call the /api/admin endpoint with the GET method.

Definition

GET /api/admin

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = firstName

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

To see the first page of all admin users, use the method below:

Example

curl http://localhost:8181/api/admin \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "users": [
 {
 "id": "01b7a62a-640a-4c24-b182-c9f2852cae71",
 "username": "01b7a62a-640a-4c24-b182-c9f2852cae71",
 "isActive": true,
 "createAt": "2017-09-25T09:28:49+0200",
 "email": "administrator@example.com",
 "external": true,
 "apiKey": "customPernamentToken",
 "dtype": "admin",
 "roles": [
 {
 "id": 38,
 "name": "Reporter admin",
 "role": "ROLE_ADMIN",
 "master": false
 }
],
 },
 {
 "id": "22200000-0000-474c-b092-b0dd880c07e2",
 "username": "admin",
 "isActive": true,
 "createAt": "2017-09-21T13:54:04+0200",
 "email": "admin@example.com",
 "external": false,
 "dtype": "admin",
 "roles": [
 {
 "id": 38,
 "name": "Reporter admin",
 "role": "ROLE_ADMIN",
 "master": false
 }
],
 },
 {
 "id": "4383c58e-ff64-4e03-8364-5b716cb3e9e5",
 "username": "4383c58e-ff64-4e03-8364-5b716cb3e9e5",
 "isActive": true,
 "createAt": "2017-09-25T09:33:45+0200",
 "email": "administrato123r@example.com",
 "external": true,
 "apiKey": "customPernamentToken123",
 "dtype": "admin",
 "roles": [
 {
 "id": 38,
 "name": "Reporter admin",
 "role": "ROLE_ADMIN",
 "master": false
 }
],
 }
],
 "total": 3
}

Updating an Admin User

To fully update an admin user, you need to call the /api/admin/data/<admin> endpoint with the PUT method.

Definition

PUT /api/admin/data/<admin>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	admin[firstName]

	request

	First name

	admin[lastName]

	request

	Last name

	admin[phone]

	request

	Phone number

	admin[email]

	request

	E-mail address (required)

	admin[plainPassword]

	request

	Plain password (required if admin[external]=0

	admin[external]

	request

	Allows to define permanent token. Set 1 if true, otherwise 0

	admin[apiKey]

	request

	Permanent token (required if admin[external]=1

	admin[isActive]

	request

	Set account active. Set 1 if active, otherwise 0

	admin[roles][]

	request

	Role IDs assigned to this administrator (max 1 role)

Example

To fully update the admin user with id = 22200000-0000-474c-b092-b0dd880c07e2, use the method below:

curl http://localhost:8181/api/admin/data/01b7a62a-640a-4c24-b182-c9f2852cae71 \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -X "PUT" \
 -d "admin[firstName]=first+name" \
 -d "admin[lastName]=last+name" \
 -d "admin[phone]=00000000000" \
 -d "admin[email]=administrator@example.com" \
 -d "admin[plainPassword]=newPassword12!" \
 -d "admin[external]=0" \
 -d "admin[roles][0]=37"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

Warning

Remember, you must update the whole data set of the admin user. If you don’t want to change the e-mail address, you must pass the current
value.

Tip

It’s not possible to delete an admin user. Set isActive=0 if you want to disable access to Open Loyalty.

Example

curl http://localhost:8181/api/admin/data/01b7a62a-640a-4c24-b182-c9f2852cae71 \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -X "PUT"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 400 Bad Request

{
 "form": {
 "children": {
 "firstName": {},
 "lastName": {},
 "phone": {},
 "email": {},
 "plainPassword": {},
 "external": {},
 "apiKey": {},
 "isActive": {}
 }
 },
 "errors": []
}

Analytics API

These endpoints will allow you to easily analyze your data in Open Loyalty.

Getting the number of registered customers

To get the number of registered customers in a loyalty program, you need to call the /api/<storeCode>/admin/analytics/customers
endpoint with the GET method. Additionally, the method returns the number of registered customers for each of the following past intervals (day, week, month, year).

Definition

GET /api/<storeCode>/admin/analytics/customers

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the analytics of.

Example

curl http://localhost:8181/api/DEFAULT/admin/analytics/customers \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "total": 10,
 "intervals": {
 "in_1_days": 0,
 "in_7_days": 0,
 "in_30_days": 0,
 "in_365_days": 0
 }
}

Getting the number of spent and transferred points

To retrieve the number of spent and transferred points, you need to call the /api/<storeCode>/admin/analytics/points endpoint with the GET method.

Definition

GET /api/<storeCode>/admin/analytics/points

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the analytics of.

Example

curl http://localhost:8181/api/DEFAULT/admin/analytics/points \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "totalSpendingTransfers": 1,
 "totalPointsSpent": 100
}

Getting information about referrals

To retrieve the details of referrals, you need to call the /api/<storeCode>/admin/analytics/referrals endpoint with the GET method.

Definition

GET /api/<storeCode>/admin/analytics/referrals

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the analytics of.

Example

curl http://localhost:8181/api/DEFAULT/admin/analytics/referrals \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "total": 4,
 "totalCompleted": 0,
 "totalRegistered": 0
}

Getting information about transactions

To retrieve information about transactions, you need to call the /api/<storeCode>/admin/analytics/transactions endpoint with the GET method.
Additionally, the method returns the number of orders for each of the following past intervals (day, week, month, year).

Definition

GET /api/<storeCode>/admin/analytics/transactions

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the analytics of.

	excludeCustomersWithoutTransaction

	query

	exclude customers without transaction

Example

curl http://localhost:8181/api/DEFAULT/admin/analytics/transactions \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "total": 5,
 "countIntervals": {
 "in_1_days": 0,
 "in_7_days": 0,
 "in_30_days": 0,
 "in_365_days": 0
 },
 "amount": 1126,
 "amountWithoutDeliveryCosts": 1126,
 "currency": "EUR"
}

Get level statistics

To get level statistics, you need to call the /api/<storeCode>/admin/analytics/levels endpoint with the GET method.

Definition

GET /api/<storeCode>/admin/analytics/levels

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the analytics of.

Example

curl http://localhost:8181/api/DEFAULT/admin/analytics/levels \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "total": 4,
 "levels": [
 {
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e50000",
 "name": "level0",
 "conditionValue": "0.00",
 "store": "",
 "customers": 9
 },
 {
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e51111",
 "name": "level1",
 "conditionValue": "20.00",
 "store": "",
 "customers": 0
 },
 {
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e52222",
 "name": "level2",
 "conditionValue": "200.00",
 "store": "",
 "customers": 0
 },
 {
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e53333",
 "name": "level3",
 "conditionValue": "999.00",
 "store": "",
 "customers": 1
 }
]
}

Audit API

These endpoints will allow you to see the list of actions taken in Open Loyalty.

Getting log

To retrieve the action log, you need to call the /api/audit/log endpoint with the GET method.

Definition

GET /api/audit/log

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	entityType

	query

	(optional) Narrow results to given entity type
for example: customer

	eventType

	query

	(optional) Narrow results to given event type
for example: RegisterCustomer

	entityId

	query

	(optional) Narrow results to given entity ID

	username

	query

	(optional) Narrow results to given username

	auditLogId

	query

	(optional) Narrow results to given audit log ID

	createdAtFrom

	query

	(optional) For example 2017-09-27

	createdAtTo

	query

	(optional) For example 2017-09-27

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = firstName

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/audit/log \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "logs": [
 {
 "auditLogId": {
 "auditLogId": "916e963e-dd14-4ef8-849a-e5b54779657d"
 },
 "createdAt": "2017-09-21T13:54:05+0200",
 "eventType": "MoveCustomerToLevel",
 "entityType": "customer",
 "entityId": "00000000-0000-474c-b092-b0dd880c07e1",
 "username": "<notlogged>",
 "data": [
 "000096cf-32a3-43bd-9034-4df343e5fd93"
]
 },
 {
 "auditLogId": {
 "auditLogId": "1efe9c57-c42f-41a1-988c-c4f5b65382d8"
 },
 "createdAt": "2017-09-21T13:54:05+0200",
 "eventType": "RegisterCustomer",
 "entityType": "customer",
 "entityId": "00000000-0000-474c-b092-b0dd880c07e1",
 "username": "<notlogged>",
 "data": {
 "firstName": "John",
 "lastName": "Doe",
 "gender": "male",
 "phone": "11111",
 "email": "user@example.com",
 "birthDate": 653011200,
 "createdAt": 1470646394,
 "company": {
 "name": "test",
 "nip": "nip"
 },
 "loyaltyCardNumber": "000000",
 "address": {
 "street": "Dmowskiego",
 "address1": "21",
 "city": "Wrocław",
 "country": "pl",
 "postal": "50-300",
 "province": "Dolnośląskie"
 }
 }
 }
],
 "total": 92
}

Example

curl http://localhost:8181/api/audit/log \
 -G \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "entityType=customer" \
 -d "page=2" \
 -d "perPage=2" \
 -d "sort=username" \
 -d "direction=DESC"

Example Response

STATUS: 200 OK

{
 "logs": [
 {
 "auditLogId": {
 "auditLogId": "b6781066-a292-4043-bd14-52998ee10691"
 },
 "createdAt": "2017-09-21T13:54:05+0200",
 "eventType": "ActivateCustomer",
 "entityType": "customer",
 "entityId": "00000000-0000-474c-b092-b0dd880c07e1",
 "username": "<notlogged>",
 "data": []
 },
 {
 "auditLogId": {
 "auditLogId": "4574e09b-280c-4e5d-bdd2-327589c714da"
 },
 "createdAt": "2017-09-21T13:54:05+0200",
 "eventType": "MoveCustomerToLevel",
 "entityType": "customer",
 "entityId": "00000000-0000-474c-b092-b0dd880c07e2",
 "username": "<notlogged>",
 "data": [
 "000096cf-32a3-43bd-9034-4df343e5fd93"
]
 }
],
 "total": 92
}

Exporting the view

To export the audit logs view you need to call /api/audit/log/export endpoint with the GET method and the same parameters.
Pagination does not work in this endpoint, you can only sort the exported entries.

Definition

GET /api/audit/log/export

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	entityType

	query

	(optional) Narrow results to given entity type
for example: customer

	eventType

	query

	(optional) Narrow results to given event type
for example: RegisterCustomer

	entityId

	query

	(optional) Narrow results to given entity ID

	username

	query

	(optional) Narrow results to given username

	auditLogId

	query

	(optional) Narrow results to given audit log ID

	createdAtFrom

	query

	(optional) For example 2017-09-27

	createdAtTo

	query

	(optional) For example 2017-09-27

	sort

	query

	(optional) Sort by column name,
by default = firstName

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/audit/log/export \
 -G \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "entityType=user" \
 -d "sort=username" \
 -d "direction=DESC"

Example Response

STATUS: 200 OK

"Log ID",Username,"User type","User ID","Event type","Entity type","Entity ID","Created at","Additional information",IP
ff9817cd-f393-4e12-9319-4fe7207bd80b,admin,admin,22200000-0000-474c-b092-b0dd880c07e2,AuthenticationSuccess,user,,2020-03-13T12:12:58+01:00,[],172.22.0.1
39e25450-0969-4b5e-82ff-d083e5b9c7e1,,admin,,AuthenticationFailure,user,,2020-03-13T12:12:29+01:00,[],172.22.0.1

Creating an archive

To dump all audit log data older than a year counting from today’s midnight into an archived file
in the server’s archives storage, use /api/audit/log/archive endpoint with the POST method.

Definition

POST /api/audit/log/archive

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	archive[beforeDate]

	request

	Date to which logs are archived

Example

curl http://localhost:8181/api/audit/log/archive \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "archive[beforeDate]=2019-03-10"

Example Response

STATUS: 200 OK

{
 "totalArchived": 92,
 "filename": "audit_log_archive_before_2019_05_20.xml"
}

Example Response

STATUS: 200 OK

{
 "totalArchived": 0,
 'message': "No logs to archive from this time range. The file was not created."
}

Example Response

STATUS: 200 OK

{
 "totalArchived": 0,
 "filename": "audit_log_archive_before_2019_05_20.xml",
 "message": "Archive for this date range has already been generated.",
}

Getting an archive list

To retrieve all archived files in the server’s archives storage, use /api/audit/log/archive endpoint with the GET method.

Definition

GET /api/audit/log/archive

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

Example

curl http://localhost:8181/api/audit/log/archive \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "archives": [
 "audit_log_archive_before_2019_03_11.xml",
 "audit_log_archive_before_2019_05_20.xml"
],
 "total": 2
}

Downloading an archive

To download an archived file in the server’s archives storage, use /api/audit/log/archive/{filename} endpoint with the GET method.

Definition

GET /api/audit/log/archive/<filename>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<filename>

	query

	Archive file name, with .xml extension

Example

curl http://localhost:8181/api/audit/log/archive/audit_log_archive_before_2019_03_11.xml \
 -X "GET" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

<?xml version="1.0" encoding="UTF-8"?>
<log>
 <entry id="39e25450-0969-4b5e-82ff-d083e5b9c7e1" createdAt="2019-03-06T12:12:29+01:00">
 <user>admin</user>
 <userId>56a91360-1100-cc5c-83fe-c7199e88c723</userId>
 <userType>admin</userType>
 <event>AuthenticationFailure</event>
 <entityType>user</entityType>
 <entityId/>
 <data>[]</data>
 <origin>8.8.8.8</origin>
 </entry>
</log>

Reward Campaigns API

These endpoints will allow you to easily manage Reward Campaigns.

Note

Each role in Open Loyalty has individual endpoints to manage reward campaigns.

Reedem cashback (admin)

To reedem cashback for a customer, you need to call the /api/<storeCode>/admin/campaign/cashback/redeem endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/campaign/cashback/redeem

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to redeem cashback from.

	customerId

	request

	Customer ID

	pointsAmount

	request

	Number of points to spend

	cashbackId

	request

	(optional) Cashback id

Example

curl http://localhost:8181/api/DEFAULT/admin/campaign/cashback/redeem \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "customerId=6102cef9-d263-46de-974d-ad2e89f6e81d" \
 -d "pointsAmount=5"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "customerId": "6102cef9-d263-46de-974d-ad2e89f6e81d",
 "pointsAmount": 5,
 "pointValue": 10,
 "rewardAmount": 100
}

Reedem cashback (customer)

To reedem cashback as a customer, you need to call the /api/<storeCode>/customer/campaign/cashback/redeem endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/campaign/cashback/redeem

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to redeem cashback from.

	pointsAmount

	request

	Number of points to spend

	cashbackId

	request

	Cashback id

Example

curl http://localhost:8181/api/DEFAULT/customer/campaign/cashback/redeem \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "cashbackId=972012b8-633d-41e8-be5a-5125c1a5be63" \
 -d "pointsAmount=5"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "customerId": "6102cef9-d263-46de-974d-ad2e89f6e81d",
 "pointsAmount": 5,
 "pointValue": 10,
 "rewardAmount": 50,
 "cashbackId" : "972012b8-633d-41e8-be5a-5125c1a5be63"
}

Simulate cashback

To simulate cashback, you need to call the /api/<storeCode>/admin/campaign/cashback/simulate endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/campaign/cashback/simulate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store

	customerId

	request

	Customer ID

	pointsAmount

	request

	Number of points to spend

Example

curl http://localhost:8181/api/DEFAULT/admin/campaign/cashback/simulate \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "customerId=5bfded09-0931-4eac-baad-0d663cfd8976" \
 -d "pointsAmount=10"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "customerId": "5bfded09-0931-4eac-baad-0d663cfd8976",
 "pointsAmount": 10,
 "pointValue": "3.00",
 "rewardAmount": 30
}

Cashback provider callback

To run a cashback provider callback, you need to call the /api/<storeCode>/campaign/cashback/callback/<provider> endpoint with the POST method.

Definition

POST /api/<storeCode>/campaign/cashback/callback/<provider>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to perform cashback on.

	<provider>

	request

	Provider, possible value: paytm

Example

curl http://localhost:8181/api/DEFAULT/campaign/cashback/callback/paytm \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Content: {"type":null,"requestGuid":null,"orderId":"f0b9914e-cd54-4a85-bc3f-d36e0c37edaa_1c50ef53-ab5b-4d24-9d03-f93c7ec042fe","status":null,"statusCode":"ACCEPTED","statusMessage":"ACCEPTED","response":null,"metadata":null}" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The data in the Content is an example value and depends on the [Cashback][PayTM] Requested PayTM cashback message after redeeming cashback.

Example Response

STATUS: 200 OK

{
 "couponId": "1c50ef53-ab5b-4d24-9d03-f93c7ec042fe",
 "id": "f0b9914e-cd54-4a85-bc3f-d36e0c37edaa_1c50ef53-ab5b-4d24-9d03-f93c7ec042fe",
 "customerId": "f0b9914e-cd54-4a85-bc3f-d36e0c37edaa",
 "code": "ACCEPTED",
 "message": "ACCEPTED",
 "provider": "paytm",
 "failed": false
}

Create a new campaign

To create a new campaign, you need to call the /api/<storeCode>/campaign endpoint with the POST method.

Definition

POST /api/<storeCode>/campaign

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to create the campaign in.

	campaign[reward]

	request

	Campaign type. Possible types:
discount_code, free_delivery_code, gift_code, event_code, value_code.

	campaign[translations][en][name]

	request

	Campaign name in given locale.

	campaign[translations][en][shortDescription]

	request

	(optional) A short description in given locale.

	campaign[translations][en][conditionsDescription]

	request

	(optional) A description of required conditions to apply in given locale.

	campaign[translations][en][usageInstruction]

	request

	(optional) A little information about how to use coupons in given locale.

	campaign[translations][en][brandDescription]

	request

	(optional) A little information about brand in given locale.

	campaign[active]

	request

	Set 1 if active, otherwise 0

	campaign[categories]

	request

	(optional) Array of category IDs.

	campaign[pushNotificationText]

	request

	Push message sent to a customer on this campaign becoming available to them

	campaign[pointValue]

	request

	Each point will be exchanged for provided value (in current currency) for
cashback

	campaign[cashbackProvider]

	request

	Cashback campaigns can automatically send funds using the listed APIs.

	campaign[costInPoints]

	request

	How many points it costs

	campaign[target]

	request

	Set level to choose target from defined levels.
Set segment to choose target from defined segments

	campaign[levels]

	request

	Array of level IDs. (required only if ``target=level``)

	campaign[segments]

	request

	Array of segment IDs. (required only if ``target=segment``)

	campaign[labels]

	request

	(optional) Informational labels in format “key:value;key1:value1”

	campaign[unlimited]

	request

	Set 1 if unlimited, otherwise 0

	campaign[singleCoupon]

	request

	Set 1 if single coupon, otherwise 0

	campaign[limit]

	request

	Global campaign usage limit. (required only if ``unlimited=0``)

	campaign[limitPerUser]

	request

	Customer campaign usage limit. (required only if ``unlimited=0``)

	campaign[coupons]

	request

	Array of coupon codes.

	campaign[campaignVisibility][allTimeVisible]

	request

	Set 1 if always visible, otherwise 0

	campaign[campaignVisibility][visibleFrom]

	request

	Campaign visible from YYYY-MM-DD HH:mm, for example 2017-10-05 10:59.
(required only if ``allTimeVisible=0``)

	campaign[campaignVisibility][visibleTo]

	request

	Campaign visible to YYYY-MM-DD HH:mm, for example 2017-10-05 10:59.
(required only if ``allTimeVisible=0``)

	campaign[campaignActivity][allTimeActive]

	request

	Set 1 if always active, otherwise 0

	campaign[campaignActivity][activeFrom]

	request

	Campaign active from YYYY-MM-DD HH:mm, for example 2017-10-05 10:59.
(required only if ``allTimeActive=0``)

	campaign[campaignActivity][activeTo]

	request

	Campaign visible to YYYY-MM-DD HH:mm, for example 2017-10-05 10:59.
(required only if ``allTimeVisible=0``)

	campaign[daysInactive]

	request

	Number of days, during which coupon will not be active after purchase
0 means “active immediately”
Required for all rewards besides cashback

	campaign[daysValid]

	request

	Number of days, during which coupon will be valid, after activation
0 means “valid forever”
Required for all rewards besides cashback

Example

curl http://localhost:8181/api/DEFAULT/campaign \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "campaign[translations][en][reward]=discount_code" \
 -d "campaign[translations][en][name]=Discount+Code+Campaign" \
 -d "campaign[translations][en][shortDescription]=A+short+description+of+discount+code+campaign" \
 -d "campaign[translations][en][conditionsDescription]=Discount+code+for+registration" \
 -d "campaign[translations][en][usageInstruction]=Use+discount+code+as+you+like" \
 -d "campaign[translations][en][brandDescription]=Some+brand+description" \
 -d "campaign[active]=1" \
 -d "campaign[costInPoints]=100" \
 -d "campaign[target]=level" \
 -d "campaign[labels]=type:promotion;type:cashback" \
 -d "campaign[levels][0]=e82c96cf-32a3-43bd-9034-4df343e5fd94" \
 -d "campaign[levels][1]=000096cf-32a3-43bd-9034-4df343e5fd94" \
 -d "campaign[unlimited]=0" \
 -d "campaign[singleCoupon]=0" \
 -d "campaign[limit]=10" \
 -d "campaign[limitPerUser]=1" \
 -d "campaign[daysValid]=0" \
 -d "campaign[daysInactive]=0" \
 -d "campaign[coupons][0]=testCoupon" \
 -d "campaign[coupons][1]=DiscountCoupon" \
 -d "campaign[campaignVisibility][allTimeVisible]=0" \
 -d "campaign[campaignVisibility][visibleFrom]=2017-10-05+10:59" \
 -d "campaign[campaignVisibility][visibleTo]=2018-10-05+10:59" \
 -d "campaign[campaignActivity][allTimeActive]=0" \
 -d "campaign[campaignActivity][activeFrom]=2017-09-05+10:59" \
 -d "campaign[campaignActivity][activeTo]=2017-12-05+10:59"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The e82c96cf-32a3-43bd-9034-4df343e5fd94 or 000096cf-32a3-43bd-9034-4df343e5fd94 id are example values.
Your value may be different. Check the list of all levels if you are not sure which id should be used.

Note

The testCoupon or DiscountCoupon are example values. You can name code coupons as you like.

Attention

If you would like to add photos (one or many) to the campaign, you need to call the /api/<storeCode>/campaign/<campaign>/photo endpoint with the POST method.
You can find more details in the Add a photo to the campaign section.

Example Response

STATUS: 200 OK

{
 "campaignId": "3062c881-93f3-496b-9669-4238c0a62be8"
}

Example

curl http://localhost:8181/api/DEFAULT/campaign \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 400 Bad Request

{
 "form": {
 "children": {
 "reward": {},
 "translations": {
 "children": {
 "en": {
 "children": {
 "name": {
 "errors": [
 "This value should not be blank."
]
 },
 "shortDescription": {},
 "conditionsDescription": {},
 "usageInstruction": {},
 "brandDescription": {}
 }
 },
 "pl": {
 "children": {
 "name": {},
 "shortDescription": {},
 "conditionsDescription": {},
 "usageInstruction": {},
 "brandDescription": {}
 }
 }
 }
 },
 "active": {},
 "costInPoints": {},
 "target": {},
 "levels": {},
 "segments": {},
 "unlimited": {},
 "singleCoupon": {},
 "limit": {},
 "limitPerUser": {},
 "coupons": {},
 "daysInactive": {},
 "daysValid": {},
 "campaignVisibility": {
 "children": {
 "allTimeVisible": {},
 "visibleFrom": {},
 "visibleTo": {}
 }
 },
 "campaignActivity": {
 "children": {
 "allTimeActive": {},
 "activeFrom": {},
 "activeTo": {}
 }
 }
 }
 },
 "errors": []
}

Get a collection of campaigns

To retrieve a paginated list of campaigns, you need to call the /api/<storeCode>/campaign endpoint with the GET method.

Definition

GET /api/<storeCode>/campaign

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the campaign from.

	labels

	request

	(optional) Array of labels with key and/or value
ie. labels[0][key]=key&labels[0][value]=value

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

	format

	query

	(optional) Format of descriptions [html].
Default is RAW.

	withoutCoupons

	query

	(optional) Exclude coupons from the response

	categoryId[]

	query

	(optional) Array of category Ids

To see the first page of all campaigns, use the method below:

Example

curl http://localhost:8181/api/DEFAULT/campaign \
 -X "GET" -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

In the example below, you can get all Reward Campaigns that have a label with a key and value. You can
filter by a label’s key or value if you want and specify as many condition as you want.

Note

Translatable fields (name, short description, etc.) are returned in given locale.

curl http://localhost:8181/api/DEFAULT/campaign?labels[0][key]=key&labels[0][value]=value \
 -X "GET" -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "campaigns": [
 {
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd94"
],
 "segments": [
 "00000000-0000-0000-0000-000000000002"
],
 "coupons": [
 "123"
],
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "reward": "discount_code",
 "name": "tests",
 "active": true,
 "costInPoints": 10,
 "singleCoupon": false,
 "unlimited": false,
 "limit": 10,
 "limitPerUser": 2,
 "daysValid": 0,
 "daysInactive": 0,
 "campaignActivity": {
 "allTimeActive": false,
 "activeFrom": "2016-01-01T00:00:00+0100",
 "activeTo": "2018-01-01T00:00:00+0100"
 },
 "campaignVisibility": {
 "allTimeVisible": false,
 "visibleFrom": "2016-01-01T00:00:00+0100",
 "visibleTo": "2018-01-01T00:00:00+0100"
 },
 "segmentNames": {
 "00000000-0000-0000-0000-000000000002": "anniversary"
 },
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd94": "level2"
 },
 "labels": [
 {
 "key": "type",
 "value": "promotion"
 }
],
 "usageLeft": 1,
 "visibleForCustomersCount": 0,
 "usersWhoUsedThisCampaignCount": 0,
 "hasPhoto": false,
 "translations": [
 {
 "name": "Promotion campaign",
 "shortDescription": "_Campaign_ short description",
 "conditionsDescription": "Some conditions description",
 "usageInstruction": "Usage of coupon instruction",
 "brandDescription": "Brand description",
 "id": 32,
 "locale": "en"
 },
 {
 "name": "Promocyjna kampania",
 "shortDescription": "Opis promocyjnej kampanii",
 "id": 33,
 "locale": "pl"
 }
]
 },
 {
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd94"
],
 "segments": [
 "00000000-0000-0000-0000-000000000002"
],
 "coupons": [
 "123"
],
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd92",
 "reward": "discount_code",
 "name": "for test",
 "active": false,
 "costInPoints": 10,
 "singleCoupon": false,
 "unlimited": false,
 "limit": 10,
 "limitPerUser": 2,
 "daysValid": 0,
 "daysInactive": 0,
 "campaignActivity": {
 "allTimeActive": false,
 "activeFrom": "2016-01-01T00:00:00+0100",
 "activeTo": "2018-01-01T00:00:00+0100"
 },
 "campaignVisibility": {
 "allTimeVisible": false,
 "visibleFrom": "2016-01-01T00:00:00+0100",
 "visibleTo": "2018-01-01T00:00:00+0100"
 },
 "segmentNames": {
 "00000000-0000-0000-0000-000000000002": "anniversary"
 },
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd94": "level2"
 },
 "will_be_active_from": "2016-01-01T00:00:00+0100",
 "will_be_active_to": "2018-01-01T00:00:00+0100",
 "usageLeft": 1,
 "visibleForCustomersCount": 0,
 "usersWhoUsedThisCampaignCount": 0,
 "hasPhoto": false,
 "translations": [
 {
 "name": "tests",
 "shortDescription": "_shortdescription_",
 "conditionsDescription": "_conditionsdescription_",
 "usageInstruction": "_usageinstruction_",
 "brandDescription": "_branddescription_",
 "id": 32,
 "locale": "en"
 },
 {
 "name": "tests_pl",
 "shortDescription": "short desc test pl",
 "id": 33,
 "locale": "pl"
 }
]
 },
 {
 "levels": [
 "e82c96cf-32a3-43bd-9034-4df343e5fd94",
 "000096cf-32a3-43bd-9034-4df343e5fd94"
],
 "segments": [],
 "coupons": [
 "testCoupon",
 "DiscountCoupon"
],
 "campaignId": "3062c881-93f3-496b-9669-4238c0a62be8",
 "reward": "discount_code",
 "name": "Discount Code Campaign",
 "shortDescription": "A short description of discount code campaign",
 "conditionsDescription": "Discount code for registration",
 "active": true,
 "costInPoints": 100,
 "singleCoupon": false,
 "unlimited": false,
 "limit": 10,
 "limitPerUser": 1,
 "daysValid": 0,
 "daysInactive": 0,
 "campaignActivity": {
 "allTimeActive": false,
 "activeFrom": "2017-09-05T10:59:00+0200",
 "activeTo": "2017-12-05T10:59:00+0100"
 },
 "campaignVisibility": {
 "allTimeVisible": false,
 "visibleFrom": "2017-10-05T10:59:00+0200",
 "visibleTo": "2018-10-05T10:59:00+0200"
 },
 "usageInstruction": "Use discount code as you like",
 "segmentNames": [],
 "levelNames": {
 "e82c96cf-32a3-43bd-9034-4df343e5fd94": "level1",
 "000096cf-32a3-43bd-9034-4df343e5fd94": "level2"
 },
 "usageLeft": 2,
 "visibleForCustomersCount": 0,
 "usersWhoUsedThisCampaignCount": 0,
 "hasPhoto": false,
 "translations": [
 {
 "name": "tests",
 "shortDescription": "_shortdescription_",
 "conditionsDescription": "_conditionsdescription_",
 "usageInstruction": "_usageinstruction_",
 "brandDescription": "_branddescription_",
 "id": 32,
 "locale": "en"
 },
 {
 "name": "tests_pl",
 "shortDescription": "short desc test pl",
 "id": 33,
 "locale": "pl"
 }
]
 }
],
 "total": 3
}

Get a collection of active campaigns

To retrieve a paginated list of active campaigns, you need to call the /api/<storeCode>/campaign/active endpoint with the GET method.

Definition

GET /api/<storeCode>/campaign/active

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the campaigns from.

	format

	query

	If set to html, the descriptions will be in HTML format

Example

To see the first page of all campaigns, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/active \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

 {
"campaigns": [
{
 "id": "000096cf-6361-4d70-e169-676e00000001",
 "name": "Test configured campaign"
},
{
 "id": "000096cf-6361-4d70-e169-676e00000003",
 "name": "Test reward campaign"
},
{
 "id": "000096cf-6361-4d70-e169-676e11111111",
 "name": "cashback"
},
{
 "id": "000096cf-6361-4d70-e169-676e22222222",
 "name": "Percentage discount code"
},
{
 "id": "000096cf-6361-4d70-e169-676e55555555",
 "name": "Percentage discount code"
},
{
 "id": "000096cf-6361-4d70-e169-676e66666666",
 "name": "Percentage discount code"
},
{
 "id": "000096cf-6361-4d70-e169-676e44444444",
 "name": "GEO custom campaign"
},
{
 "id": "fce61034-a48e-39f5-af3b-c8aa294601f9"
},
{
 "id": "a58388e4-bf99-34d7-9d4a-848efd5b6687",
 "name": "2"
},
{
 "id": "8500766f-1aa3-3117-9423-70c6851294c7",
 "name": "4"
},
{
 "id": "9ea077ae-6d9f-3547-b43f-cb89471ce4d3",
 "name": "6"
},
{
 "id": "0c1f68bc-529f-39b5-99df-b5740048a84a",
 "name": "8"
},
{
 "id": "1942beff-5375-3455-ad1d-f608c18b0707",
 "name": "10"
},
{
 "id": "2bca67fd-2ece-47ea-a556-2ec0b3faeba3",
 "name": "tertrt"
},
{
 "id": "5413dff3-47ba-4342-a669-cc9bb54ea1fa",
 "name": "dddddd"
},
{
 "id": "4cd1415d-6c20-4642-a2eb-cd985c1f88aa",
 "name": "testowe"
},
{
 "id": "40d4b8c5-3be4-4f76-8804-d1dc3c9a9732",
 "name": "test"
},
{
 "id": "110d39ce-47ab-4c2c-b0f8-a71c95e0520a",
 "name": "cashback"
}
]}

Get a collection of bought campaigns

To retrieve a paginated list of bought campaigns, you need to call the /api/<storeCode>/campaign/bought endpoint with the GET method.

Definition

GET /api/<storeCode>/campaign/bought

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the entries from.

	used

	request

	(optional) Possible values : true/false

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

	purchasedAtFrom

	query

	(optional) Purchase date from filter

	purchasedAtTo

	query

	(optional) Purchase date to filter

	usageDateFrom

	query

	(optional) Usage date from filter

	usageDateTo

	query

	(optional) Usage date to filter

	activeSinceFrom

	query

	(optional) Active since date from filter

	activeToFrom

	query

	(optional) Active since date to filter

	activeToTo

	query

	(optional) Active to date to filter

	deliveryStatus

	query

	
	(optional) Delivery status filter

	Possible values: ordered, canceled, shipped,
delivered

Example

To see the first page of all bought campaigns, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/bought \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
"boughtCampaigns": [
{
 "canBeUsed": true,
 "rewardCampaignId": "000096cf-6361-4d70-e169-676e22222222",
 "campaignId": "000096cf-6361-4d70-e169-676e22222222",
 "customerId": "7ae0712b-f029-4839-9c53-278c37c6fd35",
 "purchasedAt": "2019-03-14T10:29:05+0100",
 "coupon": {
 "code": "10",
 "id": "d481c4f2-fa88-476a-9e12-a39f728d94d8"
 },
 "campaignType": "percentage_discount_code",
 "campaignName": "Percentage discount code",
 "customerEmail": "maxnowacki690711@test.pl",
 "customerName": "Max",
 "customerLastname": "Nowacki",
 "campaignShippingAddress": {},
 "costInPoints": 0,
 "currentPointsAmount": 100,
 "used": false,
 "status": "active",
 "transactionId": {
 "transactionId": "33fbedb5-ff71-4a18-9711-4352d3b9e317"
 },
 "returnedAmount": 0,
 "deliveryStatus": {
 "status": ""
 }
},
 {
 "canBeUsed": true,
 "rewardCampaignId": "000096cf-6361-4d70-e169-676e11111111",
 "campaignId": "000096cf-6361-4d70-e169-676e11111111",
 "customerId": "6102cef9-d263-46de-974d-ad2e89f6e81d",
 "purchasedAt": "2019-03-14T13:45:21+0100",
 "coupon": {
 "code": "",
 "id": "6797ed0a-65eb-4a75-b1a2-500b18077dc3"
 },
 "campaignType": "cashback",
 "campaignName": "cashback",
 "customerEmail": "maxnowacki209528@test.pl",
 "customerName": "Max",
 "customerLastname": "Nowacki",
 "campaignShippingAddress": {},
 "costInPoints": 0,
 "currentPointsAmount": 100,
 "used": false,
 "status": "active",
 "returnedAmount": 0,
 "deliveryStatus": {
 "status": ""
 }
},
{
 "canBeUsed": true,
 "rewardCampaignId": "000096cf-6361-4d70-e169-676e22222222",
 "campaignId": "000096cf-6361-4d70-e169-676e22222222",
 "customerId": "79b5c229-5f9a-4c4b-9acc-7620fb95b38a",
 "purchasedAt": "2019-03-14T13:48:11+0100",
 "coupon": {
 "code": "40",
 "id": "1a4d7e14-fffc-4049-be41-60e824b5102e"
 },
 "campaignType": "percentage_discount_code",
 "campaignName": "Percentage discount code",
 "customerEmail": "test@test.pl",
 "customerName": "alajna",
 "customerLastname": "user",
 "campaignShippingAddress": {},
 "costInPoints": 0,
 "currentPointsAmount": 100,
 "used": false,
 "status": "active",
 "transactionId": {
 "transactionId": "98b15ef5-94ad-43ef-9984-0d41197d14e6"
 },
 "returnedAmount": 0,
 "deliveryStatus": {
 "status": ""
 }
}
],
"total": 3
}

Get a collection of campaigns’ purchases exported to a CSV file

To retrieve a paginated list of campaign purchases exported to a CSV file, you need to call the /api/<storeCode>/campaign/bought/export/csv endpoint with the GET method.

Definition

GET /api/<storeCode>/campaign/bought/export/csv

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store from which the entries should be exported.

	purchasedAtFrom

	query

	(optional) Purchase date from filter

	purchasedAtTo

	query

	(optional) Purchase date to filter

Example

To see the first page of all campaign purchases in CSV file format, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/bought/export/csv \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

0.Name,1.Date,2.Cost,"3.Tax value",4.email,5.phone,6.Firstname,7.Surname,"8.Points balance","9.Is used"
"Percentage discount code","2019-03-14 10:29:05",0,,maxnowacki690711@test.pl,,Max,Nowacki,100,
"Percentage discount code","2019-03-14 10:30:18",0,,maxnowacki974845@test.pl,,Max,Nowacki,340,
"Percentage discount code","2019-03-14 10:20:01",0,,test@test.pl,,alajna,user,100,
"Percentage discount code","2019-03-14 10:29:32",0,,maxnowacki856039@test.pl,,Max,Nowacki,340,
 gift123,"2019-03-15 08:40:24",3,,maxnowacki209528@test.pl,,Max,Nowacki,95,1
 test,"2019-03-15 08:15:14",10,,maxnowacki160093@test.pl,,Max,Nowacki,290,
 testowe,"2019-03-14 10:28:20",10,,maxnowacki160093@test.pl,,Max,Nowacki,300,
 "Percentage discount code","2019-03-14 09:29:50",0,,user-return@example.com,,TestUser,ForCouponTest,2410,
 cashback,"2019-03-14 13:45:21",0,,maxnowacki209528@test.pl,,Max,Nowacki,100,
"Percentage discount code","2019-03-14 13:48:11",0,,test@test.pl,,alajna,user,100,

Get a collection of publicly available campaigns

To retrieve a paginated list of campaigns that are publicly available, you need to call the /api/<storeCode>/campaign/public/available endpoint with the GET method.

Definition

GET /api/<storeCode>/campaign/public/available

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the campaigns from.

	labels

	request

	(optional) Filter by labels

	isFeatured

	request

	(optional) Filter by featured tag

	campaignType

	request

	(optional) Filter by campaign type

	name

	request

	(optional) Filter by campaign name

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

	categoryId[]

	query

	(optional) Array of category Ids

	format

	query

	(optional) Format of descriptions [html].
Default is RAW.

Example

To see the first page of all publicly available campaigns, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/public/available \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

Update a campaign

To fully update a campaign, you need to call the /api/<storeCode>/campaign/<campaign> endpoint with the PUT method.

Definition

PUT /api/<storeCode>/campaign/<campaign>

Example

To fully update a campaign with id = 3062c881-93f3-496b-9669-4238c0a62be8, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/3062c881-93f3-496b-9669-4238c0a62be8 \
 -X "PUT" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "campaign[reward]=discount_code" \
 -d "campaign[translations][en][reward]=discount_code" \
 -d "campaign[translations][en][name]=Discount+Code+Campaign" \
 -d "campaign[translations][en][shortDescription]=A+short+description+of+discount+code+campaign" \
 -d "campaign[translations][en][conditionsDescription]=Discount+code+for+registration" \
 -d "campaign[translations][en][usageInstruction]=Use+discount+code+as+you+like" \
 -d "campaign[translations][en][brandDescription]=Some+brand+description" \
 -d "campaign[active]=1" \
 -d "campaign[costInPoints]=100" \
 -d "campaign[target]=level" \
 -d "campaign[labels]=type:promotion;type:cashback" \
 -d "campaign[levels][0]=e82c96cf-32a3-43bd-9034-4df343e5fd94" \
 -d "campaign[levels][1]=000096cf-32a3-43bd-9034-4df343e5fd94" \
 -d "campaign[unlimited]=0" \
 -d "campaign[singleCoupon]=0" \
 -d "campaign[limit]=10" \
 -d "campaign[limitPerUser]=1" \
 -d "campaign[daysInactive]=0" \
 -d "campaign[daysValid]=1" \
 -d "campaign[coupons][0]=testCoupon" \
 -d "campaign[coupons][1]=DiscountCoupon" \
 -d "campaign[campaignVisibility][allTimeVisible]=0" \
 -d "campaign[campaignVisibility][visibleFrom]=2017-10-05+10:59" \
 -d "campaign[campaignVisibility][visibleTo]=2018-10-05+10:59" \
 -d "campaign[campaignActivity][allTimeActive]=0" \
 -d "campaign[campaignActivity][activeFrom]=2017-09-05+10:59" \
 -d "campaign[campaignActivity][activeTo]=2017-12-05+10:59"
 -f "campaign[photos][0]=@/FILE_PATH/FILE_NAME"

Warning

Remember, you must update the whole data of the campaign.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The e82c96cf-32a3-43bd-9034-4df343e5fd94 or 000096cf-32a3-43bd-9034-4df343e5fd94 id are example values.
Your value may be different. Check the list of all levels if you are not sure which id should be used.

Note

The testCoupon or DiscountCoupon are example values. You can name code coupons as you like.

Example Response

STATUS: 200 OK

{
 "campaignId": "3062c881-93f3-496b-9669-4238c0a62be8"
}

Remove campaign’s brand icon

To remove a campaign’s brand icon from the campaign, you need to call the /api/<storeCode>/campaign/<campaign>/brand_icon endpoint with the DELETE method.

Definition

DELETE /api/<storeCode>/campaign/<campaign>/brand_icon

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the campaign belongs to.

	<campaign>

	query

	Campaign ID

Example

To remove a brand icon from the campaign campaign = 000096cf-32a3-43bd-9034-4df343e5fd93, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/000096cf-32a3-43bd-9034-4df343e5fd93/brand_icon \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The campaign = 000096cf-32a3-43bd-9034-4df343e5fd93 id is an example value. Your value may be different.
Check the list of all campaigns if you are not sure which id should be used.

Example Response

STATUS: 204 No Content

Get a campaign’s brand icon

To get a campaign’s brand icon, you need to call the /api/<storeCode>/campaign/<campaign>/brand_icon endpoint with the GET method.

Definition

GET /api/<storeCode>/campaign/<campaign>/brand_icon

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the campaign belongs to.

	<campaign>

	query

	Campaign ID

Example

To get a brand icon for the campaign campaign = 000096cf-32a3-43bd-9034-4df343e5fd93, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/000096cf-32a3-43bd-9034-4df343e5fd93/brand_icon \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The campaign = 000096cf-32a3-43bd-9034-4df343e5fd93 id is an example value. Your value may be different.
Check the list of all campaigns if you are not sure which id should be used.

Example Response

STATUS: 200 OK

Add a brand icon to the campaign

To add a brand icon to the campaign, you need to call the /api/<storeCode>/campaign/<campaign>/brand_icon endpoint with the POST method.

Definition

POST /api/<storeCode>/campaign/<campaign>/brand_icon

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the campaign belongs to.

	<campaign>

	query

	Campaign ID

	brand_icon[file]

	request

	Absolute path to the photo

Example

To add a brand icon for the campaign campaign = 000096cf-32a3-43bd-9034-4df343e5fd93, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/000096cf-32a3-43bd-9034-4df343e5fd93/brand_icon \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "brand_icon[file]=C:\fakepath\Photo.png"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The campaign = 000096cf-32a3-43bd-9034-4df343e5fd93 id is an example value. Your value may be different.
Check the list of all campaigns if you are not sure which id should be used.

Note

The brand_icon[file]=C:fakepathPhoto.png is an example value. Your value may be different.

Example Response

STATUS: 204 No Content

Get campaign details

To retrieve the details of a campaign, you need to call the /api/<storeCode>/campaign/<campaign> endpoint with the GET method.

Definition

GET /api/<storeCode>/campaign/<campaign>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the campaign from.

	<campaign>

	query

	Campaign ID

	format

	query

	(optional) Format of descriptions [html].
Default is RAW.

Example

To see the details of the admin user with campaign = 3062c881-93f3-496b-9669-4238c0a62be8, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/3062c881-93f3-496b-9669-4238c0a62be8 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

Translatable fields (name, short description etc.) are returned in given locale.

Note

The 3062c881-93f3-496b-9669-4238c0a62be8 id is an example value. Your value may be different.
Check the list of all admin users if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "levels": [
 "e82c96cf-32a3-43bd-9034-4df343e5fd94",
 "000096cf-32a3-43bd-9034-4df343e5fd94"
],
 "segments": [],
 "coupons": [
 "testCoupon",
 "DiscountCoupon"
],
 "campaignId": "3062c881-93f3-496b-9669-4238c0a62be8",
 "reward": "discount_code",
 "name": "Discount Code Campaign 1",
 "shortDescription": "A short description of discount code campaign",
 "conditionsDescription": "Discount code for registration",
 "active": true,
 "costInPoints": 100,
 "singleCoupon": false,
 "unlimited": false,
 "limit": 10,
 "limitPerUser": 1,
 "daysValid": 1,
 "daysInactive": 0,
 "campaignActivity": {
 "allTimeActive": false,
 "activeFrom": "2017-09-05T10:59:00+0200",
 "activeTo": "2017-12-05T10:59:00+0100"
 },
 "campaignVisibility": {
 "allTimeVisible": false,
 "visibleFrom": "2017-10-05T10:59:00+0200",
 "visibleTo": "2018-10-05T10:59:00+0200"
 },
 "labels": [
 {
 "key": "type",
 "value": "promotion"
 }
],
 "usageInstruction": "Use discount code as you like",
 "segmentNames": [],
 "levelNames": {
 "e82c96cf-32a3-43bd-9034-4df343e5fd94": "level1",
 "000096cf-32a3-43bd-9034-4df343e5fd94": "level2"
 },
 "usageLeft": 2,
 "visibleForCustomersCount": 0,
 "usersWhoUsedThisCampaignCount": 0,
 "hasPhoto": false,
 "translations": [
 {
 "name": "Discount Code Campaign 1",
 "shortDescription": "A short description of discount code campaign",
 "id": 65,
 "locale": "en"
 },
 {
 "name": "Discount Code Campaign 1 in polish",
 "shortDescription": "A short description of discount code campaign in polish",
 "id": 66,
 "locale": "pl"
 }
],
 "photos" :[
 {
 "photoId" : "e82c96cf-32a3-43bd-9034-4df343e5f23ed",
 "path" : "campaign_photos/e82c96cf-32a3-43bd-9034-4df343e5fd322294",
 "orginalName" : "my_image.png",
 "mimeType" : "image/png"
 }
]
}

Get available campaigns for a customer

To check which campaigns are available for a specific customer, you need to call the /api/<storeCode>/admin/customer/<customer>/campaign/available endpoint with the GET method.

Definition

GET /api/<storeCode>/admin/customer/<customer>/campaign/available

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the campaign from.

	<customer>

	query

	Customer ID

	isFeatured

	query

	(optional) Filter by featured tag

	hasSegment

	query

	(optional) 1 to return only campaigns offered
exclusively to some segments, 0 for campaigns
offered only to all segments; omit to return all
campaigns

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

	categoryId[]

	query

	(optional) Array of category Ids

	additionalPoints

	query

	(optional) Number of points to be taken during
simulation(customer’s balance + additional
points). When set, the check will not use
customer’s segments and level limits.

Example

To see the list of campaigns for a customer with ID customer = 00000000-0000-474c-b092-b0dd880c07e2, use the method below:

curl http://localhost:8181/api/DEFAULT/admin/customer/00000000-0000-474c-b092-b0dd880c07e2/campaign/available \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The 00000000-0000-474c-b092-b0dd880c07e2 id is an example value. Your value may be different.
Check the list of all customers if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "campaigns": [
 {
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd93",
 "e82c96cf-32a3-43bd-9034-4df343e5fd94",
 "000096cf-32a3-43bd-9034-4df343e5fd94"
],
 "segments": [],
 "coupons": [
 "123"
],
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "reward": "discount_code",
 "name": "tests",
 "active": true,
 "costInPoints": 10,
 "singleCoupon": false,
 "unlimited": false,
 "limit": 10,
 "limitPerUser": 2,
 "daysValid": 0,
 "daysInactive": 0,
 "campaignActivity": {
 "allTimeActive": false,
 "activeFrom": "2016-01-01T00:00:00+0100",
 "activeTo": "2018-01-01T00:00:00+0100"
 },
 "campaignVisibility": {
 "allTimeVisible": false,
 "visibleFrom": "2016-01-01T00:00:00+0100",
 "visibleTo": "2018-01-01T00:00:00+0100"
 },
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0",
 "e82c96cf-32a3-43bd-9034-4df343e5fd94": "level1",
 "000096cf-32a3-43bd-9034-4df343e5fd94": "level2"
 },
 "usageLeft": 1,
 "usageLeftForCustomer": 1,
 "canBeBoughtByCustomer": true,
 "visibleForCustomersCount": 2,
 "usersWhoUsedThisCampaignCount": 0,
 "hasPhoto": false,
 "labels": [
 {
 "key": "type",
 "value": "promotion"
 }
],
 }
],
 "total": 1
}

Buy reward campaign for a specific customer (admin)

To buy a reward campaign for a specific customer, you need to call the /api/<storeCode>/admin/customer/<customer>/campaign/<campaign>/buy endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/customer/<customer>/campaign/<campaign>/buy

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to buy the reward from.

	<customer>

	query

	Customer ID

	<campaign>

	query

	Campaign ID

	withoutPoints

	query

	(optional) true|false - if set to
true, customer points will not be used

	quantity

	query

	(optional) default 1 - number
of coupons to buy (not valid for
cashback and percentage_discount_code)

Example

To buy a reward campaign campaign = 000096cf-32a3-43bd-9034-4df343e5fd93 for the customer customer = 00000000-0000-474c-b092-b0dd880c07e2
use the method below:

curl http://localhost:8181/api/DEFAULT/admin/customer/00000000-0000-474c-b092-b0dd880c07e2/campaign/000096cf-32a3-43bd-9034-4df343e5fd93/buy
 -X "POST"
 -H "Accept: application/json"
 -H "Content-type: application/x-www-form-urlencoded"
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The 000096cf-32a3-43bd-9034-4df343e5fd93 id is an example value. Your value may be different.
Check the list of all campaigns if you are not sure which id should be used.

Note

The 00000000-0000-474c-b092-b0dd880c07e2 id is an example value. Your value may be different.
Check the list of all customers if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "coupons": [{
 "code": "123",
 "id": "ceb169c7-4fe2-4b49-9f2a-5a18634d7236
 }]
}

Check campaign visibility for customers

To check reward campaign visibility for customers, you need to call the /api/<storeCode>/campaign/<campaign>/customers/visible endpoint with the GET method.

Definition

GET /api/<storeCode>/campaign/<campaign>/customers/visible

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the visible campaigns of.

	<campaign>

	query

	Campaign ID

Example

To check reward campaign visibility for customers campaign = 000096cf-32a3-43bd-9034-4df343e5fd93, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/000096cf-32a3-43bd-9034-4df343e5fd93/customers/visible \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The campaign = 000096cf-32a3-43bd-9034-4df343e5fd93 id is an example value. Your value may be different.
Check the list of all campaigns if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "customers": [
 {
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "active": true,
 "firstName": "John",
 "lastName": "Doe",
 "gender": "male",
 "email": "user@example.com",
 "phone": "11111",
 "birthDate": "1990-09-11T02:00:00+0200",
 "createdAt": "2016-08-08T10:53:14+0200",
 "levelId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "agreement1": false,
 "agreement2": false,
 "agreement3": false,
 "updatedAt": "2017-09-21T13:54:04+0200",
 "campaignPurchases": [],
 "transactionsCount": 1,
 "transactionsAmount": 3,
 "transactionsAmountWithoutDeliveryCosts": 3,
 "amountExcludedForLevel": 0,
 "averageTransactionAmount": 3,
 "lastTransactionDate": "2017-09-22T13:54:08+0200",
 "currency": "eur",
 "levelPercent": "14.00%"
 },
 {
 "customerId": "00000000-0000-474c-b092-b0dd880c07e2",
 "active": true,
 "firstName": "Jane",
 "lastName": "Doe",
 "gender": "male",
 "email": "user-temp@example.com",
 "phone": "111112222",
 "birthDate": "1990-09-11T00:00:00+0200",
 "address": {
 "street": "Test",
 "address1": "1",
 "province": "Mazowieckie",
 "city": "Warszawa",
 "postal": "00-000",
 "country": "PL"
 },
 "loyaltyCardNumber": "0000",
 "createdAt": "2016-08-08T10:53:14+0200",
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e5fd94",
 "manuallyAssignedLevelId": {
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e5fd94"
 },
 "agreement1": true,
 "agreement2": false,
 "agreement3": false,
 "updatedAt": "2017-10-02T11:49:25+0200",
 "campaignPurchases": [
 {
 "purchaseAt": "2017-10-02T12:03:34+0200",
 "costInPoints": 10,
 "campaignId": {
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93"
 },
 "used": false,
 "coupon": {
 "code": "123"
 }
 }
],
 "transactionsCount": 1,
 "transactionsAmount": 3,
 "transactionsAmountWithoutDeliveryCosts": 3,
 "amountExcludedForLevel": 0,
 "averageTransactionAmount": 3,
 "lastTransactionDate": "2017-09-22T13:54:08+0200",
 "currency": "eur",
 "levelPercent": "15.00%"
 }
],
 "total": 2
}

Get a campaign’s photo

To get a campaign’s photo, you need to call the /api/<storeCode>/campaign/<campaign>/photo/<photoId> endpoint with the GET method.

Definition

GET /api/<storeCode>/campaign/<campaign>/photo/<photoId>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the campaign belongs to.

	<campaign>

	query

	Campaign ID

	<photoId>

	query

	Photo ID

Example

To get the photo photoId = 08ae48fd-04b0-4a08-a2a7-fcfca3c4caf5 for campaign campaign = 000096cf-32a3-43bd-9034-4df343e5fd93, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/000096cf-32a3-43bd-9034-4df343e5fd93/photo/08ae48fd-04b0-4a08-a2a7-fcfca3c4caf5 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The campaign = 000096cf-32a3-43bd-9034-4df343e5fd93 id and photoId = 08ae48fd-04b0-4a08-a2a7-fcfca3c4caf5 are example values. Your values may be different.
Check the list of all campaigns if you are not sure which id should be used.

Example Response

STATUS: 200 OK

Note

In the response you will get raw file content with a proper Content-Type header, for example:
Content-Type: image/jpeg.

Example Response

The campaign may not have a photo at all and you will receive the following response.

STATUS: 404 Not Found

{
 "error": {
 "code": 404,
 "message": "Not Found"
 }
}

Remove a campaign’s photo

To remove a campaign’s photo, you need to call the /api/<storeCode>/campaign/<campaign>/photo/<photoId> endpoint with the DELETE method.

Definition

DELETE /api/<storeCode>/campaign/<campaign>/photo/<photoId>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the campaign belongs to.

	<campaign>

	query

	Campaign ID

	<photoId>

	query

	Photo ID

Example

To remove the photo photoId = 08ae48fd-04b0-4a08-a2a7-fcfca3c4caf5 for campaign campaign = 000096cf-32a3-43bd-9034-4df343e5fd93, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/000096cf-32a3-43bd-9034-4df343e5fd93/photo/08ae48fd-04b0-4a08-a2a7-fcfca3c4caf5 \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The campaign = 000096cf-32a3-43bd-9034-4df343e5fd93 id and photoId = 08ae48fd-04b0-4a08-a2a7-fcfca3c4caf5 are example values. Your values may be different.
Check the list of all campaigns if you are not sure which id should be used.

Example Response

STATUS: 204 No Content

Add a photo to a campaign

To add a photo to a campaign, you need to call the /api/<storeCode>/campaign/<campaign>/photo endpoint with the POST method.

Definition

POST /api/<storeCode>/campaign/<campaign>/photo

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the campaign belongs to.

	<campaign>

	query

	Campaign ID

	photo[file]

	request

	Absolute path to the photo

Example

To add a photo to the campaign campaign = 000096cf-32a3-43bd-9034-4df343e5fd93, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/000096cf-32a3-43bd-9034-4df343e5fd93/photo \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "photo[file]=C:\fakepath\Photo.png"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The campaign = 000096cf-32a3-43bd-9034-4df343e5fd93 id is an example value. Your value may be different.
Check the list of all campaigns if you are not sure which id should be used.

Note

The photo[file]=C:fakepathPhoto.png is an example value. Your value may be different.

Example Response

STATUS: 200 OK

Change a campaign’s state

To make a campaign active or inactive, you need to call the /api/<storeCode>/campaign/<campaign>/<active> endpoint with the POST method.

Definition

POST /api/<storeCode>/campaign/<campaign>/<active>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the activated/deactivated campaign belongs to.

	<campaign>

	query

	Campaign ID

	<active>

	query

	Possible values: active, inactive

Example

To make the campaign campaign = 000096cf-32a3-43bd-9034-4df343e5fd93 active, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/000096cf-32a3-43bd-9034-4df343e5fd93/active \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The campaign = 000096cf-32a3-43bd-9034-4df343e5fd93 id is an example value. Your value may be different.
Check the list of all campaigns if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93"
}

Example

To make the campaign campaign = 000096cf-32a3-43bd-9034-4df343e5fd93 inactive, use the method below:

curl http://localhost:8181/api/DEFAULT/campaign/000096cf-32a3-43bd-9034-4df343e5fd93/inactive \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The campaign = 000096cf-32a3-43bd-9034-4df343e5fd93 id is an example value. Your value may be different.
Check the list of all campaigns if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93"
}

Example Not Found Response

STATUS: 404 Not Found

{
 "error": {
 "code": 404,
 "message": "Not Found"
 }
}

Get a campaign collection (seller)

To retrieve a paginated list of campaigns, you need to call the /api/<storeCode>/seller/campaign endpoint with the GET method.

Definition

GET /api/<storeCode>/seller/campaign

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the campaigns from.

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

To see the first page of all campaigns, use the method below:

Example

curl http://localhost:8181/api/DEFAULT/seller/campaign \
 -X "GET" -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

When using endpoints starting with /api/<storeCode>/seller, you need to authorize using seller account credentials.

Note

As a seller, you will receive less information about a campaign than an administrator.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "campaigns": [
 {
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd93",
 "e82c96cf-32a3-43bd-9034-4df343e5fd94",
 "000096cf-32a3-43bd-9034-4df343e5fd94"
],
 "segments": [],
 "coupons": [
 "123"
],
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "reward": "discount_code",
 "name": "tests",
 "active": true,
 "costInPoints": 10,
 "singleCoupon": false,
 "unlimited": false,
 "limit": 10,
 "limitPerUser": 2,
 "campaignActivity": {
 "allTimeActive": false,
 "activeFrom": "2016-01-01T00:00:00+0100",
 "activeTo": "2018-01-01T00:00:00+0100"
 },
 "campaignVisibility": {
 "allTimeVisible": false,
 "visibleFrom": "2016-01-01T00:00:00+0100",
 "visibleTo": "2018-01-01T00:00:00+0100"
 },
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0",
 "e82c96cf-32a3-43bd-9034-4df343e5fd94": "level1",
 "000096cf-32a3-43bd-9034-4df343e5fd94": "level2"
 },
 "labels": [
 {
 "key": "type",
 "value": "promotion"
 }
],
 "usageLeft": 0,
 "visibleForCustomersCount": 2,
 "usersWhoUsedThisCampaignCount": 1
 },
 {
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd94"
],
 "segments": [
 "00000000-0000-0000-0000-000000000002"
],
 "coupons": [
 "123"
],
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd92",
 "reward": "discount_code",
 "name": "for test",
 "active": true,
 "costInPoints": 10,
 "singleCoupon": false,
 "unlimited": false,
 "limit": 10,
 "limitPerUser": 2,
 "campaignActivity": {
 "allTimeActive": false,
 "activeFrom": "2016-01-01T00:00:00+0100",
 "activeTo": "2018-01-01T00:00:00+0100"
 },
 "campaignVisibility": {
 "allTimeVisible": false,
 "visibleFrom": "2016-01-01T00:00:00+0100",
 "visibleTo": "2018-01-01T00:00:00+0100"
 },
 "segmentNames": {
 "00000000-0000-0000-0000-000000000002": "anniversary"
 },
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd94": "level2"
 },
 "usageLeft": 1,
 "visibleForCustomersCount": 0,
 "usersWhoUsedThisCampaignCount": 0
 }
],
 "total": 2
}

Get campaign details (seller)

To retrieve the details of a campaign, you need to call the /api/<storeCode>/seller/campaign/<campaign> endpoint with the GET method.

Definition

GET /api/<storeCode>/seller/campaign/<campaign>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the campaign from.

	<campaign>

	query

	Campaign ID

Example

To see the details of the admin user with campaign = 3062c881-93f3-496b-9669-4238c0a62be8, use the method below:

curl http://localhost:8181/api/DEFAULT/seller/campaign/3062c881-93f3-496b-9669-4238c0a62be8 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

When using endpoints starting with /api/<storeCode>/seller, you need to authorize using seller account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The 3062c881-93f3-496b-9669-4238c0a62be8 id is an example value. Your value may be different.
Check the list of all admin users if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "levels": [
 "e82c96cf-32a3-43bd-9034-4df343e5fd94",
 "000096cf-32a3-43bd-9034-4df343e5fd94"
],
 "segments": [],
 "coupons": [
 "testCoupon",
 "DiscountCoupon"
],
 "campaignId": "3062c881-93f3-496b-9669-4238c0a62be8",
 "reward": "discount_code",
 "name": "Discount Code Campaign 1",
 "shortDescription": "A short description of discount code campaign",
 "conditionsDescription": "Discount code for registration",
 "active": true,
 "costInPoints": 100,
 "singleCoupon": false,
 "unlimited": false,
 "limit": 10,
 "limitPerUser": 1,
 "labels": [
 {
 "key": "type",
 "value": "promotion"
 }
],
 "campaignActivity": {
 "allTimeActive": false,
 "activeFrom": "2017-09-05T10:59:00+0200",
 "activeTo": "2017-12-05T10:59:00+0100"
 },
 "campaignVisibility": {
 "allTimeVisible": false,
 "visibleFrom": "2017-10-05T10:59:00+0200",
 "visibleTo": "2018-10-05T10:59:00+0200"
 },
 "usageInstruction": "Use discount code as you like",
 "segmentNames": [],
 "levelNames": {
 "e82c96cf-32a3-43bd-9034-4df343e5fd94": "level1",
 "000096cf-32a3-43bd-9034-4df343e5fd94": "level2"
 },
 "usageLeft": 2,
 "visibleForCustomersCount": 0,
 "usersWhoUsedThisCampaignCount": 0
}

Get available campaigns for a customer (seller)

To check which campaigns are available for a specific customer, you need to call the /api/<storeCode>/seller/customer/<customer>/campaign/available endpoint with the GET method.

Definition

GET /api/<storeCode>/seller/customer/<customer>/campaign/available

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the campaigns from.

	<customer>

	query

	Customer ID

	isFeatured

	query

	(optional) Filter by featured tag

	hasSegment

	query

	(optional) 1 to return only campaigns offered
exclusively to some segments, 0 for campaigns
offered only to all segments; omit to return all
campaigns

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name. Also available
to sort by child fields like
campaignVisibility.visibleFrom

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

	additionalPoints

	query

	(optional) Number of points to be taken during
simulation(customer’s balance + additional
points). When set, the check will not use
customer’s segments and level limits.

Example

To see the list of campaigns for a customer with the ID customer = 00000000-0000-474c-b092-b0dd880c07e2, use the method below:

curl http://localhost:8181/api/DEFAULT/seller/customer/00000000-0000-474c-b092-b0dd880c07e2/campaign/available \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

When using endpoints starting with /api/<storeCode>/seller, you need to authorize using seller account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The 00000000-0000-474c-b092-b0dd880c07e2 id is an example value. Your value may be different.
Check the list of all customers if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "campaigns": [
 {
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd93",
 "e82c96cf-32a3-43bd-9034-4df343e5fd94",
 "000096cf-32a3-43bd-9034-4df343e5fd94"
],
 "segments": [],
 "coupons": [
 "123"
],
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "reward": "discount_code",
 "name": "tests",
 "active": true,
 "costInPoints": 10,
 "singleCoupon": false,
 "unlimited": false,
 "limit": 10,
 "limitPerUser": 2,
 "campaignActivity": {
 "allTimeActive": false,
 "activeFrom": "2016-01-01T00:00:00+0100",
 "activeTo": "2018-01-01T00:00:00+0100"
 },
 "campaignVisibility": {
 "allTimeVisible": false,
 "visibleFrom": "2016-01-01T00:00:00+0100",
 "visibleTo": "2018-01-01T00:00:00+0100"
 },
 "labels": [
 {
 "key": "type",
 "value": "promotion"
 }
],
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0",
 "e82c96cf-32a3-43bd-9034-4df343e5fd94": "level1",
 "000096cf-32a3-43bd-9034-4df343e5fd94": "level2"
 },
 "usageLeft": 1,
 "usageLeftForCustomer": 1,
 "canBeBoughtByCustomer": true,
 "visibleForCustomersCount": 2,
 "usersWhoUsedThisCampaignCount": 0
 }
],
 "total": 1
}

Buy a reward campaign for a specific customer (seller)

To buy a reward campaign for a specific customer, you need to call the /api/<storeCode>/seller/customer/<customer>/campaign/<campaign>/buy endpoint with the POST method.

Definition

POST /api/<storeCode>/seller/customer/<customer>/campaign/<campaign>/buy

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the campaign belongs to.

	<customer>

	query

	Customer ID

	<campaign>

	query

	Campaign ID

	quantity

	query

	(optional) default 1 - number
of coupons to buy (not valid for
cashback and percentage_discount_code)

Example

To buy the reward campaign campaign = 000096cf-32a3-43bd-9034-4df343e5fd93 for the customer customer = 00000000-0000-474c-b092-b0dd880c07e2
use the method below:

curl http://localhost:8181/api/DEFAULT/seller/customer/00000000-0000-474c-b092-b0dd880c07e2/campaign/000096cf-32a3-43bd-9034-4df343e5fd93/buy
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

When using endpoints starting with /api/<storeCode>/seller, you need to authorize using seller account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The 000096cf-32a3-43bd-9034-4df343e5fd93 id is an example value. Your value may be different.
Check the list of all campaigns if you are not sure which id should be used.

Note

The 00000000-0000-474c-b092-b0dd880c07e2 id is an example value. Your value may be different.
Check the list of all customers if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "coupons": [{
 "code": "123",
 "id": "ceb169c7-4fe2-4b49-9f2a-5a18634d7236"
 }]
}

Get all campaigns available for a logged-in customer

To get all campaigns available, you need to call the /api/<storeCode>/customer/campaign/available endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/campaign/available

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the campaign from.

	isFeatured

	query

	(optional) IsFeatured

	page

	query

	(optional) Page

	perPage

	query

	Number of elements per page

	sort

	query

	Field to sort by

	direction

	query

	Sorting direction

	categoryId

	query

	Sorting direction

	additionalPoints

	query

	(optional) Number of points to be taken during
simulation(customer’s balance + additional
points). When set, the check will not use
customer’s segments and level limits.

Example

Get all campaigns available for logged in customer.

curl http://localhost:8181/api/DEFAULT/customer/campaign/available
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

When using endpoints starting with /api/<storeCode>/customer, you need to authorize using customer account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Change delivery status in a campaign bought by a customer

To change delivery status, use the /api/<storeCode>/admin/customer/<customer>/bought/coupon/<coupon>/changeDeliveryStatus endpoint with the PUT method.

Definition

PUT /api/<storeCode>/admin/customer/<customer>/bought/coupon/<coupon>/changeDeliveryStatus

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the updated campaign belongs to.

	<customer>

	query

	Customer ID

	<coupon>

	query

	Coupon ID

	deliveryStatus[status]

	query

	Available statuses: [“canceled”, “delivered”, “ordered”, “shipped”]
(required)

Example

To change delivery status for a customer with id = 5bdab759-5b31-48d6-a38b-ba4628ca1a91 and coupon with id = 42d74422-ca0b-46f4-8871-be26f5a0497e, use the method below:

curl http://localhost:8181/api/DEFAULT/admin/customer/5bdab759-5b31-48d6-a38b-ba4628ca1a91/bought/coupon/42d74422-ca0b-46f4-8871-be26f5a0497e/changeDeliveryStatus
 -X "PUT" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "deliveryStatus[status]=canceled"

Note

You can get all available statuses via a settings choice request /api/<storeCode>/settings/choices/deliveryStatus

Note

When using endpoints starting with /api/<storeCode>/admin/customer/<customer>/bought/coupon/<couponId>/changeDeliveryStatus, you need to authorize using admin account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "success": "Delivery status changed!"
}

Campaigns categories API

These endpoints allow you to easily manage campaign categories. Campaign categories make it possibile to group
campaigns into categories. One campaign can be assigned to many categories.

Create a new campaign category

To create a new category, you need to call the /api/<storeCode>/campaignCategory endpoint with the POST method.

Definition

POST /api/<storeCode>/campaignCategory

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the campaign category should belong to.

	campaign_category[translations][en][name]

	request

	Campaign category name in given locale.

	campaign_category[active]

	request

	Set 1 if active, otherwise 0

	campaign_category[sortOrder]

	request

	Sort order key.

Example

curl http://localhost:8181/api/DEFAULT/campaignCategory \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "campaign_category[translations][en][name]=Category+A" \
 -d "campaign_category[active]=1" \
 -d "campaign_category[sortOrder]=0"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "campaignCategoryId": "3062c881-93f3-496b-9669-4238c0a62be8"
}

Get a collection of campaign categories

To retrieve a paginated list of campaigns categories, you need to call the /api/<storeCode>/campaignCategory endpoint with the GET method.

Definition

GET /api/<storeCode>/campaignCategory

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the campaign categories from.

	name

	request

	(optional) Filter by name

	active

	request

	(optional) Filter by activity

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

	format

	query

	(optional) Format of descriptions [html].
Default is RAW.

	_locale

	query

	(optional) Retrieves data in given locale

To see the first page of all campaigns categories, use the method below:

Example

curl http://localhost:8181/api/DEFAULT/campaignCategory \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

Translatable fields (name) are returned in given locale.

Example Response

STATUS: 200 OK

{
 "categories": [
 {
 "name": "Category A",
 "campaignCategoryId": "000096cf-32a3-43bd-9034-4df343e5fd99",
 "active": true,
 "sortOrder": 0,
 "translations": [
 {
 "name": "Category A",
 "id": 1,
 "locale": "en"
 },
 {
 "name": "Kategoria A",
 "id": 3,
 "locale": "pl"
 }
]
 },
 {
 "name": "Category B",
 "campaignCategoryId": "000096cf-32a3-43bd-9034-4df343e5fd98",
 "active": true,
 "sortOrder": 0,
 "translations": [
 {
 "name": "Category B",
 "id": 2,
 "locale": "en"
 },
 {
 "name": "Kategoria B",
 "id": 4,
 "locale": "pl"
 }
]
 }
],
 "total": 2
}

Update a campaign

To fully update a campaign, you need to call the /api/<storeCode>/campaignCategory/<campaign> endpoint with the PUT method.

Definition

PUT /api/<storeCode>/campaignCategory/<campaignCategory>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the updated campaign category belongs to.

	<campaignCategory>

	query

	Id of the campaign category

	campaign_category[translations][en][name]

	request

	Campaign category name in given locale.

	campaign_category[active]

	request

	Set 1 if active, otherwise 0

	campaign_category[sortOrder]

	request

	Sort order key.

Example

To fully update a campaign category with id = 3062c881-93f3-496b-9669-4238c0a62be8, use the method below:

curl http://localhost:8181/api/DEFAULT/campaignCategory/3062c881-93f3-496b-9669-4238c0a62be8 \
 -X "PUT" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "campaign_category[translations][en][name]=Category+A" \
 -d "campaign_category[active]=1" \
 -d "campaign_category[sortOrder]=0"

Warning

Remember, you must update all data of the campaign category.

Example Response

STATUS: 200 OK

{
 "campaignCategoryId": "3062c881-93f3-496b-9669-4238c0a62be8"
}

Get campaign category details

To retrieve the details of a campaign category, you need to call the /api/<storeCode>/campaignCategory/<campaignCategory> endpoint with the GET method.

Definition

GET /api/<storeCode>/campaignCategory/<campaignCategory>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the campaign category from.

	<campaignCategory>

	query

	Id of the campaign category

	_locale

	query

	(optional) Retrieves data in given locale

Example

To see the details of the campaign category with campaignCategory = 3062c881-93f3-496b-9669-4238c0a62be8, use the method below:

curl http://localhost:8181/api/DEFAULT/campaignCategory/3062c881-93f3-496b-9669-4238c0a62be8 \
 -X "GET" -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

Translatable fields (name) are returned in given locale.

Example Response

STATUS: 200 OK

{
 "name": "Category A",
 "campaignCategoryId": "000096cf-32a3-43bd-9034-4df343e5fd99",
 "active": true,
 "sortOrder": 0,
 "translations": [
 {
 "name": "Category A",
 "id": 1,
 "locale": "en"
 },
 {
 "name": "Kategoria A",
 "id": 3,
 "locale": "pl"
 }
]
}

Activate or deactivate campaign category

To activate or deactivate a campaign category, you need to call the /api/<storeCode>/campaignCategory/<campaignCategory>/active endpoint with the POST method.

Definition

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the (de)activated campaign category belongs to.

	<campaignCategory>

	query

	Id of the campaign category

	active

	boolean

	True of False

Example

curl http://localhost:8181/api/DEFAULT/campaignCategory/00ca7e90-6361-4465-e76f-727900000001/active \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "active=1"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

204 No Content

Customer API

These endpoints allow you to easily manage customers.

Note

Each role in the Open Loyalty has individual endpoints to manage customers.

Activate a customer

To activate a customer, you need to call the /api/<storeCode>/admin/customer/<customer>/activate endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/customer/<customer>/activate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the activated customer belongs to.

	<customer>

	request

	Customer’s UUID

Example

curl http://localhost:8181/api/DEFAULT/admin/customer/1bbafb37-b51b-47c5-b3e4-e0a2d028e655/activate \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The customer = 1bbafb37-b51b-47c5-b3e4-e0a2d028e655 id is an example value. Your value may be different.
Check the list of all customers if you are not sure which id should be used.

Example Response

STATUS: 200 OK

(no content)

Deactivate a customer

To deactivate a customer, you need to call the /api/<storeCode>/admin/customer/<customer>/deactivate endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/customer/<customer>/deactivate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the deactivated customer belongs to.

	<customer>

	request

	Customer’s UUID

Example

curl http://localhost:8181/api/DEFAULT/admin/customer/1bbafb37-b51b-47c5-b3e4-e0a2d028e655/deactivate \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The customer = 1bbafb37-b51b-47c5-b3e4-e0a2d028e655 id is an example value. Your value may be different.
Check the list of all customers if you are not sure which id should be used.

Example Response

STATUS: 200 OK

(no content)

Get customer status

To get a customer status, you need to call the /api/<storeCode>/admin/customer/<customer>/status endpoint with the GET method.

Definition

GET /api/<storeCode>/admin/customer/<customer>/status

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the customer from.

	<customer>

	request

	Customer’s UUID

Example

curl http://localhost:8181/api/DEFAULT/admin/customer/1bbafb37-b51b-47c5-b3e4-e0a2d028e655/status \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The customer = 1bbafb37-b51b-47c5-b3e4-e0a2d028e655 id is an example value. Your value may be different.
Check the list of all customers if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "firstName": "Test",
 "lastName": "test",
 "customerId": "a284f230-c1c0-4a1c-af9a-159b81de1f2b",
 "points": 0,
 "totalEarnedPoints": 0,
 "usedPoints": 0,
 "expiredPoints": 0,
 "lockedPoints": 0,
 "level": "15.00%",
 "levelName": "level1",
 "levelConditionValue": 20,
 "nextLevel": "20.00%",
 "nextLevelName": "level2",
 "nextLevelConditionValue": 200,
 "transactionsAmountToNextLevelWithoutDeliveryCosts": 100,
 "transactionsAmountWithoutDeliveryCosts": 100,
 "averageTransactionsAmount": "50.00",
 "transactionsCount": 2,
 "transactionsAmount": 100,
 "pointsToNextLevel": 200,
 "currency": "eur",
 "levelWillExpireInDays": 100,
 "pointsSinceLastLevelRecalculation": 0,
 "pointsRequiredToRetainLevel": 20
 "pointsExpiringNextMonth": 150
}

Note

The information in response may vary depends on the loyalty program configuration. Here is an example
of all possible information combine.

Get customers

To get a list of customers, you need to call the /api/<storeCode>/customer/ endpoint with the GET method.

Definition

GET /api/<storeCode>/customer

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the customers from.

	firstName

	request

	(optional) Customer’s first name

	lastName

	request

	(optional) Customer’s last name

	phone

	request

	(optional) Customer’s phone

	email

	request

	(optional) Customer’s email address

	loyaltyCardNumber

	request

	(optional) Customer’s loyalty card number

	transactionsAmountFrom

	request

	(optional) Customer’s transactions amount lower limit

	transactionsAmountTo

	request

	(optional) Customer’s transactions amount upper limit

	averageTransactionAmountFrom

	request

	(optional) Customer’s average transaction amount lower limit

	averageTransactionAmountTo

	request

	(optional) Customer’s average transaction amount upper limit

	transactionsCountFrom

	request

	(optional) Customer’s transactions count lower limit

	transactionsCountTo

	request

	(optional) Customer’s transactions count upper limit

	daysFromLastTransactionTo

	request

	(optional) Customers days from last transaction upper limit

	hoursFromLastUpdateTo

	request

	(optional) Customer’s hours from last update upper limit

	strict

	query

	(optional) If true, search for exact value, otherwise like value
For example 1, by default = 0

	
	labels | query | (optional) Filter transactions by labels.

	
| Format “labels[0][key]=label_key

| & labels[0][value]=first_value

| & labels[1][key]=another_key”

	page | query | (optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name.
Note: column names corresponding to parameters ending in From or
To do not have this suffix, eg. transactionCount,
averageTransactionAmount.

	direction

	query

	(optional) Direction of sorting [ASC, DESC]

	_locale

	query

	(optional) Retrieves data in given locale

Example

curl http://localhost:8181/api/DEFAULT/customer \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Attention

Pagination limitation, we can only show 10,000 results. 10,000 is a limit and can be found in the .env file.

Example Response

STATUS: 200 OK

{
 "customers": [
 {
 "customerId": "41fd3247-2069-4677-8904-584f0ed9f6be",
 "active": true,
 "firstName": "test",
 "lastName": "test",
 "email": "test4@example.com",
 "address": {},
 "createdAt": "2018-02-02T11:39:17+0100",
 "levelId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "agreement1": true,
 "agreement2": false,
 "agreement3": false,
 "updatedAt": "2018-02-02T11:39:28+0100",
 "campaignPurchases": [],
 "transactionsCount": 0,
 "transactionsAmount": 0,
 "transactionsAmountWithoutDeliveryCosts": 0,
 "amountExcludedForLevel": 0,
 "averageTransactionAmount": 0,
 "currency": "eur",
 "levelPercent": "14.00%"
 },
 {
 "customerId": "142cbe32-da28-42d0-87aa-f93f3e1ebb91",
 "active": true,
 "firstName": "test",
 "lastName": "test",
 "email": "test3@example.com",
 "address": {},
 "createdAt": "2018-02-02T11:38:19+0100",
 "levelId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "agreement1": true,
 "agreement2": false,
 "agreement3": false,
 "updatedAt": "2018-02-02T11:38:20+0100",
 "campaignPurchases": [],
 "transactionsCount": 0,
 "transactionsAmount": 0,
 "transactionsAmountWithoutDeliveryCosts": 0,
 "amountExcludedForLevel": 0,
 "averageTransactionAmount": 0,
 "currency": "eur",
 "levelPercent": "14.00%"
 }
],
 "total": 2
}

Example

curl http://localhost:8181/api/DEFAULT/customer \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."
 -d "email=example.com" \
 -d "strict=0" \
 -d "page=1" \
 -d "perPage=2" \
 -d "sort=customerId" \
 -d "direction=asc"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "customers": [
 {
 "customerId": "00000000-0000-474c-b092-b0dd880c07e2",
 "active": true,
 "firstName": "Jane",
 "lastName": "Doe",
 "gender": "male",
 "email": "user-temp@example.com",
 "phone": "111112222",
 "birthDate": "1990-09-11T02:00:00+0200",
 "address": {
 "street": "Bagno",
 "address1": "1",
 "province": "Mazowieckie",
 "city": "Warszawa",
 "postal": "00-000",
 "country": "PL"
 },
 "loyaltyCardNumber": "0000",
 "createdAt": "2016-08-08T10:53:14+0200",
 "levelId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "agreement1": false,
 "agreement2": false,
 "agreement3": false,
 "updatedAt": "2018-02-02T11:23:18+0100",
 "campaignPurchases": [],
 "transactionsCount": 1,
 "transactionsAmount": 3,
 "transactionsAmountWithoutDeliveryCosts": 3,
 "amountExcludedForLevel": 0,
 "averageTransactionAmount": 3,
 "lastTransactionDate": "2018-02-03T11:23:21+0100",
 "currency": "eur",
 "levelPercent": "14.00%"
 },
 {
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "active": false,
 "firstName": "John",
 "lastName": "Doe",
 "gender": "male",
 "email": "user@example.com",
 "phone": "11111",
 "birthDate": "1990-09-11T02:00:00+0200",
 "createdAt": "2016-08-08T10:53:14+0200",
 "levelId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "agreement1": false,
 "agreement2": false,
 "agreement3": false,
 "updatedAt": "2018-02-02T11:23:17+0100",
 "campaignPurchases": [],
 "transactionsCount": 1,
 "transactionsAmount": 3,
 "transactionsAmountWithoutDeliveryCosts": 3,
 "amountExcludedForLevel": 0,
 "averageTransactionAmount": 3,
 "lastTransactionDate": "2018-02-03T11:23:21+0100",
 "currency": "eur",
 "levelPercent": "14.00%"
 }
],
 "total": 2
}

Example

curl http://localhost:8181/api/DEFAULT/customer \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."
 -d "email=example.com" \
 -d "strict=1" \
 -d "page=1" \
 -d "perPage=2" \
 -d "sort=customerId" \
 -d "direction=asc"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "customers": [],
 "total": 0
}

Get a customer list as an admin

To get a list of all customers, you need to call the /api/<storeCode>/admin/customer endpoint with the GET method.

Definition

GET /api/<storeCode>/admin/customer

	Parameter | Parameter type | Description

	Authorization | header | Token received during authentication

	<storeCode>

	query

	Code of the store to get the customers from.

	firstName

	request

	(optional) Customer’s first name

	lastName

	request

	(optional) Customer’s last name

	phone

	request

	(optional) Customer’s phone

	email

	request

	(optional) Customer’s email address

	loyaltyCardNumber

	request

	(optional) Customer’s loyalty card number

	transactionsAmountFrom

	request

	(optional) Customer’s transactions amount lower limit

	transactionsAmountTo

	request

	(optional) Customer’s transactions amount upper limit

	averageTransactionAmountFrom

	request

	(optional) Customer’s average transaction amount lower limit

	averageTransactionAmountTo

	request

	(optional) Customer’s average transaction amount upper limit

	transactionsCountFrom

	request

	(optional) Customer’s transactions count lower limit

	transactionsCountTo

	request

	(optional) Customer’s transactions count upper limit

	daysFromLastTransactionTo

	request

	(optional) Customers days from last transaction upper limit

	hoursFromLastUpdateTo

	request

	(optional) Customer’s hours from last update upper limit

	strict

	query

	(optional) If true, search for exact value, otherwise like value
For example 1, by default = 0

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name.
Note: column names corresponding to parameters ending in From or
To do not have this suffix, eg. transactionCount,
averageTransactionAmount.

	direction

	query

	(optional) Direction of sorting [ASC, DESC]

	_locale

	query

	(optional) Retrieves data in given locale

Example

curl http://localhost:8181/api/DEFAULT/admin/customer \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "email=example.com" \
 -d "strict=0" \
 -d "page=1" \
 -d "perPage=2" \
 -d "sort=customerId" \
 -d "direction=asc"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Attention

Pagination limitation, we can only show 10,000 results. 10,000 is a limit and can be found in the .env file.

Example Response

STATUS: 200 OK

{
 "customers": [
 {
 "customerId": "41fd3247-2069-4677-8904-584f0ed9f6be",
 "active": true,
 "firstName": "test",
 "lastName": "test",
 "email": "test4@example.com",
 "address": {},
 "createdAt": "2018-02-02T11:39:17+0100",
 "levelId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "agreement1": true,
 "agreement2": false,
 "agreement3": false,
 "updatedAt": "2018-02-02T11:39:28+0100",
 "campaignPurchases": [],
 "transactionsCount": 0,
 "transactionsAmount": 0,
 "transactionsAmountWithoutDeliveryCosts": 0,
 "amountExcludedForLevel": 0,
 "averageTransactionAmount": 0,
 "currency": "eur",
 "levelPercent": "14.00%"
 },
 {
 "customerId": "142cbe32-da28-42d0-87aa-f93f3e1ebb91",
 "active": true,
 "firstName": "test",
 "lastName": "test",
 "email": "test3@example.com",
 "address": {},
 "createdAt": "2018-02-02T11:38:19+0100",
 "levelId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "agreement1": true,
 "agreement2": false,
 "agreement3": false,
 "updatedAt": "2018-02-02T11:38:20+0100",
 "campaignPurchases": [],
 "transactionsCount": 0,
 "transactionsAmount": 0,
 "transactionsAmountWithoutDeliveryCosts": 0,
 "amountExcludedForLevel": 0,
 "averageTransactionAmount": 0,
 "currency": "eur",
 "levelPercent": "14.00%"
 }
],
 "total": 2
}

Activate a customer using SMS activation token

To activate a customer using a token (sms code), you need to call the /api/<storeCode>/customer/activate-sms/<token> endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/activate-sms/<token>

	Parameter

	Parameter type

	Description

	<storeCode>

	query

	Code of the store the customer to be activated belongs to.

	<token>

	request

	Customer’s token, SMS activation code

Example

curl http://localhost:8181/api/DEFAULT/customer/activate-sms/954604\
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded"

Note

The token = 954604 is an example value. Your value may be different.

Example Response

STATUS: 204 No Content

(no content)

Activate a customer using activation token

To activate a customer using a token, you need to call the /api/<storeCode>/customer/activate/<token> endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/activate/<token>

	Parameter

	Parameter type

	Description

	<storeCode>

	query

	Code of the store the customer to be activated belongs to.

	<token>

	request

	Customer’s token

Example

curl http://localhost:8181/api/DEFAULT/customer/activate/abcde \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The token = abcde is an example value. Your value may be different.
For testing, the value can be checked in the database, table ol_user, field action_token.

Example Response

STATUS: 200 OK

(no content)

Anonymize customer

To anonymize the customer, you need to call the /api/<storeCode>/admin/customer/<customer>/anonymize endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/customer/<customer>/anonymize

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer UUID

Example

curl http://localhost:8181/api/DEFAULT/admin/customer/c9be6a4e-9a21-414a-bbbd-f506d9ffad85/anonymize \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204

(no content)

Check if customer with given phone number or email exists

To check if a customer with a given phone number or email exists, you need to call the /api/<storeCode>/customer/check endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/check

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to check for customers.

	emailOrPhone

	request

	Customer’s email or phone

Example

curl http://localhost:8181/api/DEFAULT/customer/check?emailOrPhone=899000333 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "total": 1
}

Create a new customer

To create a new customer, you need to call the /api/<storeCode>/customer/register endpoint with the POST method.

Note

This endpoint allows you to set more customer parameters than /api/<storeCode>/customer/self_register
and is used when creating a new customer in the admin cockpit. The self register endpoint is used in the client
cockpit for registration and has some limitations.

Definition

POST /api/<storeCode>/customer/register

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to register the customer in.

	customer[firstName]

	request

	First name

	customer[lastName]

	request

	Last name

	customer[gender]

	request

	(optional) Gender. Possible values male, female,
not_disclosed

	customer[email]

	request

	E-mail address (unique)

	customer[phone]

	request

	(optional) A phone number (unique)

	customer[birthDate]

	request

	(optional) Birth date in format YYYY-MM-DD HH:mm,
for example 2017-10-05.

	customer[createdAt]

	request

	(optional) Created at in format YYYY-MM-DD HH:mm:ss,
for example 2017-01-01 14:15:16.

	customer[address][street]

	request

	(optional) Street name

	customer[address][address1]

	request

	(optional) Building number

	customer[address][address2]

	request

	(optional) Flat/Unit name

	customer[address][postal]

	request

	(optional) Post code

	customer[address][city]

	request

	(optional) City name

	customer[address][province]

	request

	(optional) Province name

	customer[address][country]

	request

	(optional) Country name

	customer[company][name]

	request

	(optional) Company name

	customer[company][nip]

	request

	(optional) Tax ID

	customer[loyaltyCardNumber]

	request

	(optional) Loyalty card number (unique)

	customer[labels]

	request

	(optional) String of labels in form of key1:val1;key2:val2

	customer[agreement1]

	request

	First agreement. Set 1 if true, otherwise 0

	customer[agreement2]

	request

	(optional) Second agreement. Set 1 if true, otherwise 0

	customer[agreement3]

	request

	(optional) Third agreement. Set 1 if true, otherwise 0

	customer[invitationToken]

	request

	(optional) Invitation token

Example

curl http://localhost:8181/api/DEFAULT/customer/register \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "customer[firstName]=John" \
 -d "customer[lastName]=Kowalski" \
 -d "customer[email]=john4@example.com" \
 -d "customer[phone]=000000005000" \
 -d "customer[agreement1]=1"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "customerId": "e0eb0355-8aaa-4fb1-8159-f58e81b7a25c",
 "email": "john4@example.com"
}

Example

curl http://localhost:8181/api/DEFAULT/customer/register \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "customer[firstName]=John" \
 -d "customer[lastName]=Kowalski" \
 -d "customer[email]=john3@example.com" \
 -d "customer[phone]=000000004000" \
 -d "customer[birthDate]=1990-01-01" \
 -d "customer[address][street]=Street" \
 -d "customer[address][postal]=00-000" \
 -d "customer[address][city]=Wroclaw" \
 -d "customer[address][province]=Dolnoslaskie" \
 -d "customer[address][country]=Poland" \
 -d "customer[company][nip]=111-222-33-44" \
 -d "customer[company][name]=Company+name" \
 -d "customer[loyaltyCardNumber]=00000000000000002" \
 -d "customer[agreement1]=1" \
 -d "customer[agreement2]=1" \
 -d "customer[agreement3]=1"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "customerId": "e0eb0355-8aaa-4fb1-8159-f58e81b7a25c",
 "email": "john3@example.com"
}

Example

curl http://localhost:8181/api/DEFAULT/customer/register \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 400 Bad Request

{
 "form": {
 "children": {
 "firstName": {},
 "lastName": {},
 "gender": {},
 "email": {},
 "phone": {},
 "birthDate": {},
 "createdAt": {},
 "address": {
 "children": {
 "street": {},
 "address1": {},
 "address2": {},
 "postal": {},
 "city": {},
 "province": {},
 "country": {}
 }
 },
 "company": {
 "children": {
 "name": {},
 "nip": {}
 }
 },
 "loyaltyCardNumber": {},
 "agreement1": {},
 "agreement2": {},
 "agreement3": {},
 "levelId": {},
 "posId": {},
 "sellerId": {}
 }
 },
 "errors": []
}

Get customer details

To get details about a customer, you need to call the /api/<storeCode>/customer/<customer> endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/<customer>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the customer from.

	<customer>

	query

	Customer ID

Example

curl http://localhost:8181/api/DEFAULT/customer/00000000-0000-474c-b092-b0dd880c07e1 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "active": true,
 "firstName": "John",
 "lastName": "Doe",
 "gender": "male",
 "email": "user@example.com",
 "phone": "+48234234000",
 "birthDate": "1990-09-11T02:00:00+0200",
 "lastLevelRecalculation": "2019-03-19T12:00:09+0100",
 "loyaltyCardNumber": "47834433524",
 "createdAt": "2016-08-08T10:53:14+0200",
 "id": "e82c96cf-32a3-43bd-9034-4df343e50000",
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e50000",
 "agreement1": false,
 "agreement2": false,
 "agreement3": false,
 "status": {
 "availableTypes": [
 "new",
 "active",
 "blocked",
 "deleted"
],
 "availableStates": [
 "no-card",
 "card-sent",
 "with-card"
],
 "type": "active",
 "state": "no-card"
 },
 "updatedAt": "2019-03-19T11:52:49+0100",
 "campaignPurchases": [],
 "transactionsCount": 2,
 "transactionsAmount": 3,
 "transactionsAmountWithoutDeliveryCosts": 3,
 "amountExcludedForLevel": 0,
 "averageTransactionAmount": 1.5,
 "lastTransactionDate": "2019-03-20T11:52:56+0100",
 "labels": [],
 "level": {
 "levelId": {
 "id": "e82c96cf-32a3-43bd-9034-4df343e50000",
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e50000"
 },
 "name": "level0",
 "translations": {
 "en": {
 "name": "level0"
 },
 "pl": {
 "name": "poziom0"
 }
 }
 },
 "version": 7,
 "currency": "eur",
 "segments": [],
 "levelPercent": "0.00%"
}

Update a customer

To update an existing customer, you need to call the /api/<storeCode>/customer/<customer> endpoint with the PUT method.

Note

The fields you omit will not be affected. The fields you include and leave empty will have their current values removed.
Eg. customer[email]=&customer[loyaltyCardNumber]=000012 will set loyaltyCardNumber, erase email and leave all other fields unaffected.

Note

All simple fields can be updated separately, but compound fields (address, company) must be updated as a whole.
Any attempt to update only one of the address fields will result in deleting other parts of the address.
Any attempt to update only the name or NIP will result in error code 500.

Definition

PUT /api/<storeCode>/customer/<customer>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the updated customer belongs to.

	<customer>

	query

	Customer ID

	customer[firstName]

	request

	(optional) First name

	customer[lastName]

	request

	(optional) Last name

	customer[gender]

	request

	(optional) Gender. Possible values male, female

	customer[email]

	request

	(optional) (unique) E-mail address

	customer[phone]

	request

	(optional) A phone number (unique)

	customer[birthDate]

	request

	(optional) Birth date in format YYYY-MM-DD HH:mm, for example 2017-10-05

	customer[createdAt]

	request

	(optional) Created at in format YYYY-MM-DD HH:mm:ss, for example 2017-01-01 14:15:16.

	customer[address][street]

	request

	(optional) Street name

	customer[address][address1]

	request

	(optional) Building number

	customer[address][address2]

	request

	(optional) Flat/Unit name

	customer[address][postal]

	request

	(optional) Post code

	customer[address][city]

	request

	(optional) City name

	customer[address][province]

	request

	(optional) Province name

	customer[address][country]

	request

	(optional) Country name

	customer[company][name]

	request

	(optional) Company name

	customer[company][nip]

	request

	(optional) Tax ID

	customer[loyaltyCardNumber]

	request

	(optional) Loyalty card number (unique)

	customer[labels]

	request

	(optional) String of labels in form of key1:val1;key2:val2.

	customer[agreement1]

	request

	(optional) First agreement. Set 1 if true, otherwise 0

	customer[agreement2]

	request

	(optional) Second agreement. Set 1 if true, otherwise 0

	customer[agreement3]

	request

	(optional) Third agreement. Set 1 if true, otherwise 0

Example

curl http://localhost:8181/api/DEFAULT/customer/e0eb0355-8aaa-4fb1-8159-f58e81b7a25c \
 -X "PUT" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "customer[email]=john4@example.com" \
 -d "customer[phone]=" \
 -d "customer[agreement2]=1"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "customerId": "e0eb0355-8aaa-4fb1-8159-f58e81b7a25c"
}

Note

In earlier versions, this endpoint returned user data after performing an update.
This feature was removed because in certain circumstances old data from before the update could be returned.
Use GET /api/customer/<customer> after the update to always get the up-to-date values instead.

Example

curl http://localhost:8181/api/DEFAULT/customer/e0eb0355-8aaa-4fb1-8159-f58e81b7a25c \
 -X "PUT" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "customer[phone]=+440000000"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 400 Bad Request

{
 "form": {
 "children": {
 "firstName": {},
 "lastName": {},
 "gender": {},
 "email": {},
 "phone": {
 "errors": [
 "This value is not a valid phone number."
]
 },
 "birthDate": {},
 "createdAt": {},
 "address": {
 "children": {
 "street": {},
 "address1": {},
 "address2": {},
 "postal": {},
 "city": {},
 "province": {},
 "country": {}
 }
 },
 "company": {
 "children": {
 "name": {},
 "nip": {}
 }
 },
 "loyaltyCardNumber": {},
 "labels": {},
 "agreement1": {},
 "agreement2": {},
 "agreement3": {},
 "levelId": {},
 "posId": {},
 "sellerId": {}
 }
 },
 "errors": []
}

Confirm a change of authentication credential

To activate a change of phone number when it is used as a log in credential, you need to call /api/<storeCode>/customer/confirm-change/<token> endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/confirm-change/<token>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<token>

	request

	Customer’s token, SMS activation code

Example

curl http://localhost:8181/api/DEFAULT/customer/confirm-change/153105\
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value can be different. Read more about Authorization here.

Note

The token = 153105 is an example value. Your value can be different.

Example Response

STATUS: 204 No Content

(no content)

Customer registrations

To get information about customer registrations, you need to call the /api/<storeCode>/customer/registrations endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/registrations

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customers belong to.

	<interval>

	request

	Group result by (day|month|year)

	<lastDays>

	request

	Display data in last days

Example

curl http://localhost:8181/api/DEFAULT/customer/registrations \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "2018-01-06": 0,
 "2018-01-07": 0,
 "2018-01-08": 0,
 "2018-01-09": 0,
 "2018-01-10": 0,
 "2018-01-11": 0,
 "2018-01-12": 0,
 "2018-01-13": 0,
 "2018-01-14": 0,
 "2018-01-15": 0,
 "2018-01-16": 0,
 "2018-01-17": 0,
 "2018-01-18": 0,
 "2018-01-19": 0,
 "2018-01-20": 0,
 "2018-01-21": 0,
 "2018-01-22": 0,
 "2018-01-23": 0,
 "2018-01-24": 0,
 "2018-01-25": 0,
 "2018-01-26": 0,
 "2018-01-27": 0,
 "2018-01-28": 0,
 "2018-01-29": 0,
 "2018-01-30": 0,
 "2018-01-31": 0,
 "2018-02-01": 0,
 "2018-02-02": 5,
 "2018-02-03": 0,
 "2018-02-04": 0
}

Remove customer’s avatar

To remove the avatar of a customer using an admin token, you need to call the /api/<storeCode>/customer/<customer>/avatar endpoint with the DELETE method.

Definition

DELETE /api/<storeCode>/customer/<customer>/avatar

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer ID

Example

curl http://localhost:8181/api/DEFAULT/customer/1cb6d205-8b77-40e1-a801-052185ed52d9/avatar \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

Get a customer’s avatar

To get a customer’s avatar using an admin token, you need to call the /api/<storeCode>/customer/<customer>/avatar endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/<customer>/avatar

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer ID

Example

curl http://localhost:8181/api/DEFAULT/customer/1cb6d205-8b77-40e1-a801-052185ed52d9/avatar \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

Set customer’s avatar

To set a customer’s avatar using an admin token, you need to call the /api/<storeCode>/customer/<customer>/avatar endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/<customer>/avatar

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer ID

	avatar[file]

	request

	Avatar file

Example

curl http://localhost:8181/api/DEFAULT/customer/1cb6d205-8b77-40e1-a801-052185ed52d9/avatar \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "avatar[file]=C:\\fakepath\\avatar.jpg"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The photo[file]=C:fakepathavatar.png is an example value. Your value may be different.

Example Response

STATUS: 204 No Content

Assign a customer to a level

To assign a customer to a level using an admin token, you need to call the /api/<storeCode>/customer/<customer>/level endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/<customer>/level

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer ID

	levelId

	request

	Level ID

Example

curl http://localhost:8181/api/DEFAULT/customer/1cb6d205-8b77-40e1-a801-052185ed52d9/level \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "levelId=e82c96cf-32a3-43bd-9034-4df343e52222"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

[]

Assign a POS to a customer

To assign a POS to a customer using an admin token, you need to call the /api/<storeCode>/customer/<customer>/pos endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/<customer>/pos

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer ID

	posId

	request

	POS ID

Example

curl http://localhost:8181/api/DEFAULT/customer/1cb6d205-8b77-40e1-a801-052185ed52d9/pos \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "posId=00000000-0000-474c-1111-b0dd880c07e3"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

[]

List Pushy tokens

To list pushy tokens using an admin token, you need to call the /api/<storeCode>/customer/<customer>/pushy-token endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/<customer>/pushy-token

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer’s ID

Example

curl http://localhost:8181/api/DEFAULT/customer/1cb6d205-8b77-40e1-a801-052185ed52d9/pushy-token \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "tokens": [
 "pushy_token"
]
}

Add a Pushy token

To add a Pushy token to a customer using an admin token, you need to call the /api/<storeCode>/customer/<customer>/pushy-token endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/<customer>/pushy-token

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer ID

	customer[pushyToken]

	request

	Customer’s pushy Token

Example

curl http://localhost:8181/api/DEFAULT/customer/1cb6d205-8b77-40e1-a801-052185ed52d9/pushy-token \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "customer[pushyToken]=pushy_token"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

Remove a Pushy token

To remove a pushy token, you need to call the /api/<storeCode>/customer/<customer>/pushy-token/<tokenToRemove> endpoint with the DELETE method.

Definition

DELETE /api/<storeCode>/customer/<customer>/pushy-token/<tokenToRemove>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer ID

	<tokenToRemove>

	query

	Pushy token to remove

Example

curl http://localhost:8181/api/DEFAULT/customer/1cb6d205-8b77-40e1-a801-052185ed52d9/pushy-token/pushy_token \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

Remove a customer from a manually assigned level

To unassign a customer from a manually assigned level using a token, you need to call the /api/<storeCode>/customer/<customer>/remove-manually-level endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/<customer>/remove-manually-level

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer ID

Example

curl http://localhost:8181/api/DEFAULT/customer/1cb6d205-8b77-40e1-a801-052185ed52d9/remove-manually-level \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

Customer status (customer)

To retrieve the status of a customer, you need to call the /api/<storeCode>/customer/customer/<customer>/status endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/customer/<customer>/status

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer UUID

Example

curl http://localhost:8181/api/DEFAULT/customer/customer/00000000-0000-474c-b092-b0dd880c07e1/status \
 -X "GET" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "firstName": "John",
 "lastName": "Doe",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "points": 161.9,
 "p2pPoints": 0,
 "totalEarnedPoints": 274.9,
 "usedPoints": 25,
 "expiredPoints": 88,
 "lockedPoints": 0,
 "level": "0.00%",
 "levelName": "level0",
 "levelConditionValue": 0,
 "nextLevel": "5.00%",
 "nextLevelName": "level1",
 "nextLevelConditionValue": 20,
 "transactionsAmountWithoutDeliveryCosts": 3,
 "transactionsAmountToNextLevel": 17,
 "averageTransactionsAmount": "1.50",
 "transactionsCount": 2,
 "transactionsAmount": 3,
 "currency": "eur",
 "pointsExpiringNextMonth": 161.9,
 "pointsExpiringBreakdown": {
 "2019-04-14": 33,
 "2019-04-15": 116.9,
 "2019-04-17": 12
 }
}

Customer status (seller)

To retrieve the status of specific customer, you need to call the /api/<storeCode>/seller/customer/<customer>/status endpoint with the GET method.

Definition

GET /api/<storeCode>/seller/customer/<customer>/status

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer UUID

Example

curl http://localhost:8181/api/DEFAULT/seller/customer/00000000-0000-474c-b092-b0dd880c07e1/status \
 -X "GET" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

When using endpoints starting with /api/<storeCode>/seller, you need to authorize using seller account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "firstName": "John",
 "lastName": "Doe",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "points": 161.9,
 "p2pPoints": 0,
 "totalEarnedPoints": 274.9,
 "usedPoints": 25,
 "expiredPoints": 88,
 "lockedPoints": 0,
 "level": "0.00%",
 "levelName": "level0",
 "levelConditionValue": 0,
 "nextLevel": "5.00%",
 "nextLevelName": "level1",
 "nextLevelConditionValue": 20,
 "transactionsAmountWithoutDeliveryCosts": 3,
 "transactionsAmountToNextLevel": 17,
 "averageTransactionsAmount": "1.50",
 "transactionsCount": 2,
 "transactionsAmount": 3,
 "currency": "eur",
 "pointsExpiringNextMonth": 161.9,
 "pointsExpiringBreakdown": {
 "2019-04-14": 33,
 "2019-04-15": 116.9,
 "2019-04-17": 12
 }
}

Send an activation code to a customer as an admin

To send an SMS activation code to specific customer, you need to call the /api/<storeCode>/admin/customer/<customer>/send-sms-code endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/customer/<customer>/send-sms-code

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer UUID

Example

curl http://localhost:8181/api/DEFAULT/admin/customer/00000000-0000-474c-b092-b0dd880c07e1/send-sms-code \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

When using endpoints starting with /api/<storeCode>/admin, you need to authorize using admin account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

Send an activation token as a customer

To send/resend an sms activation code, you need to call the /api/<storeCode>/customer/customer-phone/send-sms-code endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/customer-phone/send-sms-code

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

Example

curl http://localhost:8181/api/DEFAULT/customer/customer-phone/send-sms-code \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

Send SMS activation code as a seller

To send an SMS activation code to a specific customer, you need to call the /api/<storeCode>/seller/customer/<customer>/send-sms-code endpoint with the POST method.

Definition

POST /api/<storeCode>/seller/customer/<customer>/send-sms-code

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer UUID

Example

curl http://localhost:8181/api/DEFAULT/seller/customer/00000000-0000-474c-b092-b0dd880c07e1/send-sms-code \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

When using endpoints starting with /api/<storeCode>/seller, you need to authorize using seller account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

(no content)

Assign a POS to a customer as a seller

To assign a POS to specific customer, you need to call the /api/<storeCode>/seller/customer/<customer>/pos endpoint with the POST method.

Definition

POST /api/<storeCode>/seller/customer/<customer>/pos

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer UUID

	posId

	query

	POS UUID

Example

curl http://localhost:8181/api/DEFAULT/seller/customer/00000000-0000-474c-b092-b0dd880c07e1/pos \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "posId=00000000-0000-474c-1111-b0dd880c07e3"

Note

When using endpoints starting with /api/<storeCode>/seller, you need to authorize using seller account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The posId = 00000000-0000-474c-1111-b0dd880c07e3 and customer = 00000000-0000-474c-b092-b0dd880c07e1 are example values.
Your values may be different.

Example Response

STATUS: 200 OK

Activate a customer as a seller

To activate a specific customer, you need to call the /api/<storeCode>/seller/customer/<customer>/activate endpoint with the POST method.

Definition

POST /api/<storeCode>/seller/customer/<customer>/activate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer UUID

Example

curl http://localhost:8181/api/DEFAULT/seller/customer/00000000-0000-474c-b092-b0dd880c07e1/activate \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

When using endpoints starting with /api/<storeCode>/seller, you need to authorize using seller account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The customerId = 00000000-0000-474c-b092-b0dd880c07e1 id is an example value. Your value may be different.

Example Response

STATUS: 200 OK

Deactivate a customer as a seller

To deactivate a specific customer, you need to call the /api/<storeCode>/seller/customer/<customer>/deactivate endpoint with the POST method.

Definition

POST /api/<storeCode>/seller/customer/<customer>/deactivate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer UUID

Example

curl http://localhost:8181/api/DEFAULT/seller/customer/00000000-0000-474c-b092-b0dd880c07e1/deactivate \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

When using endpoints starting with /api/<storeCode>/seller, you need to authorize using seller account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The customerId = 00000000-0000-474c-b092-b0dd880c07e1 id is an example value. Your value may be different.

Example Response

STATUS: 200 OK

Register new customer as a seller

To register a customer, you need to call the /api/<storeCode>/seller/customer/register endpoint with the POST method.

Definition

POST /api/<storeCode>/seller/customer/register

Note

This endpoint allows you to set more customer parameters than /api/<storeCode>/customer/self_register and is used when creating
a new customer in the admin cockpit or POS cockpit. The self register endpoint is used in the client cockpit for registration
and has some limitations.

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer will belong to.

	customer[firstName]

	request

	First name

	customer[lastName]

	request

	Last name

	customer[gender]

	request

	(optional) Gender. Possible values male, female, not_disclosed

	customer[email]

	request

	(unique) E-mail address

	customer[phone]

	request

	(optional) A phone number (unique)

	customer[birthDate]

	request

	(optional) Birth date in format YYYY-MM-DD HH:mm, for example 2017-10-05

	customer[createdAt]

	request

	(optional) Created at in format YYYY-MM-DD HH:mm:ss, for example 2017-01-01 14:15:16.

	customer[address][street]

	request

	(optional) Street name

	customer[address][address1]

	request

	(optional) Building number

	customer[address][address2]

	request

	(optional) Flat/Unit name

	customer[address][postal]

	request

	(optional) Post code

	customer[address][city]

	request

	(optional) City name

	customer[address][province]

	request

	(optional) Province name

	customer[address][country]

	request

	(optional) Country name

	customer[company][name]

	request

	(optional) Company name

	customer[company][nip]

	request

	(optional) Tax ID

	customer[loyaltyCardNumber]

	request

	(optional) Loyalty card number (unique)

	customer[labels]

	request

	(optional) String of labels in form of key1:val1;key2:val2.

	customer[agreement1]

	request

	First agreement. Set 1 if true, otherwise 0

	customer[agreement2]

	request

	(optional) Second agreement. Set 1 if true, otherwise 0

	customer[agreement3]

	request

	(optional) Third agreement. Set 1 if true, otherwise 0

Example

curl http://localhost:8181/api/DEFAULT/seller/customer/register \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "customer[firstName]=Lady" \
 -d "customer[lastName]=Mini" \
 -d "customer[email]=test@openloyalty.com" \
 -d "customer[gender]=female" \
 -d "customer[agreement1]=1"

Note

When using endpoints starting with /api/<storeCode>/seller, you need to authorize using seller account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "customerId": "53c16b8e-db1e-42f9-af71-3bb76f5c3aca",
 "email": "test@openloyalty.com"
}

Search for customers as a seller

To search for a customer in POS, you need to call the /api/<storeCode>/pos/search/customer endpoint with the POST method.

Definition

POST /api/<storeCode>/pos/search/customer

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customers belong to.

	search[loyaltyCardNumber]

	query

	(optional) Loyalty card number

	search[phone]

	request

	(optional) A phone number

	search[email]

	request

	(optional) Email address

	search[firstName]

	request

	(optional) Fisrt name

	search[lastName]

	request

	(optional) Last name

	search[city]

	request

	(optional) City name

	search[postcode]

	request

	(optional) Post code

Example

curl http://localhost:8181/api/DEFAULT/pos/search/customer \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "search[firstName]=John" \
 -d "search[lastName]=Doe"

Note

When using this endpoint, you need to authorize using seller account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "customers": [
 {
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "active": false,
 "posId": "00000000-0000-474c-1111-b0dd880c07e3",
 "firstName": "John",
 "lastName": "Doe",
 "gender": "male",
 "email": "user@example.com",
 "phone": "+48234234000",
 "birthDate": "1990-09-11T02:00:00+0200",
 "lastLevelRecalculation": "2019-03-15T13:00:05+0100",
 "loyaltyCardNumber": "47834433524",
 "createdAt": "2016-08-08T10:53:14+0200",
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e50000",
 "agreement1": true,
 "agreement2": false,
 "agreement3": false,
 "status": {
 "availableTypes": [
 "new",
 "active",
 "blocked",
 "deleted"
],
 "availableStates": [
 "no-card",
 "card-sent",
 "with-card"
],
 "type": "blocked"
 },
 "updatedAt": "2019-03-18T14:44:49+0100",
 "campaignPurchases": [
 {
 "canBeUsed": false,
 "purchaseAt": "2019-03-18T13:45:39+0100",
 "costInPoints": 1,
 "campaignId": "f1eddc46-e985-43e8-bc2a-8007dca3df95",
 "used": true,
 "coupon": {
 "id": "83d6a65e-d237-4049-84aa-bb107cd6f9a4",
 "code": "test1"
 },
 "status": "active",
 "activeTo": "2019-06-16T13:45:39+0200",
 "deliveryStatus": "ordered",
 "usageDate": "2019-03-18T13:51:10+0100"
 },
 {
 "canBeUsed": false,
 "purchaseAt": "2019-03-18T13:45:39+0100",
 "costInPoints": 1,
 "campaignId": "f1eddc46-e985-43e8-bc2a-8007dca3df95",
 "used": true,
 "coupon": {
 "id": "6a2456ec-49b3-4970-9ac4-75ca01eab0ee",
 "code": "test2"
 },
 "status": "active",
 "activeTo": "2019-06-16T13:45:39+0200",
 "deliveryStatus": "ordered",
 "usageDate": "2019-03-18T13:51:10+0100"
 }
],
 "transactionsCount": 2,
 "transactionsAmount": 3,
 "transactionsAmountWithoutDeliveryCosts": 3,
 "amountExcludedForLevel": 0,
 "averageTransactionAmount": 1.5,
 "lastTransactionDate": "2019-03-16T12:53:23+0100",
 "labels": [],
 "level": {
 "levelId": {
 "id": "e82c96cf-32a3-43bd-9034-4df343e50000"
 },
 "name": "level0",
 "translations": {
 "en": {
 "name": "level0"
 },
 "pl": {
 "name": "poziom0"
 }
 }
 },
 "currency": "eur",
 "levelPercent": "0.00%",
 "posIdentifier": "pos2"
 },
 {
 "customerId": "11111111-0000-474c-b092-b0dd880c07e1",
 "active": true,
 "firstName": "John1",
 "lastName": "Doe1",
 "gender": "male",
 "email": "user-1@example.com",
 "phone": "+48456456000",
 "birthDate": "1990-09-11T02:00:00+0200",
 "lastLevelRecalculation": "2019-03-15T13:00:05+0100",
 "createdAt": "2016-08-08T10:53:14+0200",
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e50000",
 "agreement1": false,
 "agreement2": false,
 "agreement3": false,
 "status": {
 "availableTypes": [
 "new",
 "active",
 "blocked",
 "deleted"
],
 "availableStates": [
 "no-card",
 "card-sent",
 "with-card"
],
 "type": "active",
 "state": "no-card"
 },
 "updatedAt": "2019-03-15T12:53:18+0100",
 "campaignPurchases": [],
 "transactionsCount": 0,
 "transactionsAmount": 0,
 "transactionsAmountWithoutDeliveryCosts": 0,
 "amountExcludedForLevel": 0,
 "averageTransactionAmount": 0,
 "labels": [
 {
 "key": "test",
 "value": "test"
 }
],
 "level": {
 "levelId": {
 "id": "e82c96cf-32a3-43bd-9034-4df343e50000"
 },
 "name": "level0",
 "translations": {
 "en": {
 "name": "level0"
 },
 "pl": {
 "name": "poziom0"
 }
 }
 },
 "currency": "eur",
 "levelPercent": "0.00%"
 }
]
}

Import customers

To import customers, you need to call the /api/<storeCode>/admin/customer/import endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/customer/import

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customers will belong to.

	file[file]

	query

	XML file

Example

curl http://localhost:8181/api/DEFAULT/admin/customer/import \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "file[file]=C:\\fakepath\\customers.xml"

Note

When using endpoints starting with /api/<storeCode>/admin, you need to authorize using admin account credentials.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "items": [
 {
 "status": "success",
 "processImportResult": {
 "object": "4e2a75c2-f194-40e7-b54e-f208b2fd1732"
 },
 "identifier": "aXXX2222X1@tXXXXXXXst.pl"
 },
 {
 "status": "success",
 "processImportResult": {
 "object": "db081ad2-d035-4edd-8bda-21da198592db"
 },
 "identifier": "222b1222@test.pl"
 },
 {
 "status": "error",
 "message": "Convert exception: birthDate has invalid date format (Y-m-d required)",
 "identifier": "b22221a@st.pl"
 },
 {
 "status": "success",
 "processImportResult": {
 "object": "c4c169b0-265b-4ead-94c0-1972f181e100"
 },
 "identifier": "aa2222c@dgf.pl"
 },
 {
 "status": "error",
 "message": "Convert exception: gender is required node",
 "identifier": "bz22221z@test.pl"
 },
 {
 "status": "success",
 "processImportResult": {
 "object": "479129a4-283b-414d-b48b-4c3541f9f8d9"
 },
 "identifier": "bxx2222x@teist.pl"
 },
 {
 "status": "success",
 "processImportResult": {
 "object": "00c2f4ff-a8d0-4b31-a119-2bb3f0ec7b6e"
 },
 "identifier": "bx2222x@tetst.pl"
 },
 {
 "status": "error",
 "message": "Convert exception: gender is required node",
 "identifier": "cccc2222cc@test.pl"
 },
 {
 "status": "success",
 "processImportResult": {
 "object": "7f4d0ebd-69e5-488b-b7e2-42985792d63c"
 },
 "identifier": "vvvv111v7@test.pl"
 },
 {
 "status": "success",
 "processImportResult": {
 "object": "36c0e0e7-1231-4817-9fc9-3fd26280026f"
 },
 "identifier": "bb111bbbb@tesyyt.pl"
 },
 {
 "status": "error",
 "message": "Convert exception: gender is required node",
 "identifier": "nnnjn111n@test.pl"
 }
],
 "totalProcessed": 11,
 "totalSuccess": 7,
 "totalFailed": 4
}

Register a new customer as an admin

To create a new customer, you need to call the /api/<storeCode>/admin/customer/register endpoint with the POST method.

Note

This endpoint allows you to set more customer parameters than /api/<storeCode>/customer/self_register and is used when creating
a new customer in the admin cockpit or POS cockpit. The self register endpoint is used in the client cockpit for registration
and has some limitations.

Definition

POST /api/<storeCode>/admin/customer/register

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer will belong to.

	customer[firstName]

	request

	First name

	customer[lastName]

	request

	Last name

	customer[gender]

	request

	(optional) Gender. Possible values male, female, not_disclosed

	customer[email]

	request

	(unique) E-mail address

	customer[phone]

	request

	(optional) A phone number (unique)

	customer[birthDate]

	request

	(optional) Birth date in format YYYY-MM-DD HH:mm, for example 2017-10-05

	customer[createdAt]

	request

	(optional) Created at in format YYYY-MM-DD HH:mm:ss, for example 2017-01-01 14:15:16.

	customer[address][street]

	request

	(optional) Street name

	customer[address][address1]

	request

	(optional) Building number

	customer[address][address2]

	request

	(optional) Flat/Unit name

	customer[address][postal]

	request

	(optional) Post code

	customer[address][city]

	request

	(optional) City name

	customer[address][province]

	request

	(optional) Province name

	customer[address][country]

	request

	(optional) Country name

	customer[company][name]

	request

	(optional) Company name

	customer[company][nip]

	request

	(optional) Tax ID

	customer[loyaltyCardNumber]

	request

	(optional) Loyalty card number (unique)

	customer[labels]

	request

	(optional) String of labels in form of key1:val1;key2:val2.

	customer[agreement1]

	request

	First agreement. Set 1 if true, otherwise 0

	customer[agreement2]

	request

	(optional) Second agreement. Set 1 if true, otherwise 0

	customer[agreement3]

	request

	(optional) Third agreement. Set 1 if true, otherwise 0

Example

curl http://localhost:8181/api/DEFAULT/admin/customer/register \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "customer[firstName]=John" \
 -d "customer[lastName]=Kowalski" \
 -d "customer[email]=john@example.com" \
 -d "customer[phone]=0665998332" \
 -d "customer[agreement1]=1"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "customerId": "e0eb0355-8aaa-4fb1-8159-f58e81b7a25c",
 "email": "john@example.com"
}

Remove customer

To remove the customer using admin token you need to call the /api/<storeCode>/customer/<customer> endpoint with the DELETE method.

Definition

DELETE /api/<storeCode>/customer/<customer>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer ID

Example

curl http://localhost:8181/api/DEFAULT/customer/1cb6d205-8b77-40e1-a801-052185ed52d9 \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value can be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

Customer Campaign API

These endpoints will allow you to see and use Reward Campaigns for a customer.

Get all campaigns bought by a customer

To retrieve a list of rewards bought by a specific customer use the /api/<storeCode>/admin/customer/{customer}/campaign/bought endpoint with the GET method.

Definition

GET /api/<storeCode>/admin/customer/<customer>/campaign/bought

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	request

	Customer UUID

	includeDetails

	query

	(optional) Include details about bought campaign
For example 1

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = firstName

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/admin/customer/00000000-0000-474c-b092-b0dd880c07e1/campaign/bought \
 -X "GET" \
 -H "Accept:application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The customer = 00000000-0000-474c-b092-b0dd880c07e1 id is an example value. Your value may be different.
Check the list of all customers if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "campaigns": [],
 "total": 0
}

Example Response

STATUS: 200 OK

{
 "campaigns": [
 {
 "purchaseAt": "2018-01-30T18:23:24+0100",
 "costInPoints": 20,
 "campaignId": {
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93"
 },
 "used": false,
 "coupon": {
 "code": "123"
 }
 }
],
 "total": 1
}

Example

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The customer = 00000000-0000-474c-b092-b0dd880c07e1 id is an example value. Your value may be different.
Check the list of all customers if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "campaigns": [
 {
 "purchaseAt": "2018-01-30T18:23:24+0100",
 "costInPoints": 20,
 "campaignId": {
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93"
 },
 "campaign": {
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd93",
 "e82c96cf-32a3-43bd-9034-4df343e5fd94",
 "000096cf-32a3-43bd-9034-4df343e5fd94",
 "0f0d346e-9fd0-492a-84aa-2a2b61419c97"
],
 "segments": [],
 "coupons": [
 "123"
],
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "reward": "discount_code",
 "name": "tests",
 "active": true,
 "costInPoints": 20,
 "singleCoupon": false,
 "unlimited": false,
 "limit": 10,
 "limitPerUser": 2,
 "campaignActivity": {
 "allTimeActive": true
 },
 "campaignVisibility": {
 "allTimeVisible": true
 },
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0",
 "e82c96cf-32a3-43bd-9034-4df343e5fd94": "level1",
 "000096cf-32a3-43bd-9034-4df343e5fd94": "level2",
 "0f0d346e-9fd0-492a-84aa-2a2b61419c97": "level3"
 },
 "usageLeft": 0,
 "visibleForCustomersCount": 6,
 "usersWhoUsedThisCampaignCount": 1
 },
 "used": false,
 "coupon": {
 "code": "123"
 }
 }
],
 "total": 1
}

Get all campaigns available for a logged-in customer

To get all campaigns available for a logged-in customer, use the /api/<storeCode>/customer/campaign/available endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/campaign/available

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the available campaigns.

	isPublic

	query

	(optional) Filter by whether the campaign is public
or hidden; omit for all campaigns.

	isFeatured

	query

	(optional) Filter by featured tag

	hasSegment

	query

	(optional) 1 to return only campaigns offered
exclusively to some segments, 0 for campaigns
offered only to all segments; omit for all campaigns

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = firstName

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

	categoryId[]

	query

	(optional) Array of category UUIDs to filter by.

	additionalPoints

	query

	(optional) Number of points to be taken during
simulation(customer’s balance + additional points).
When set, the check will not use customer’s segments
and level limits.

Example

curl http://localhost:8181/api/DEFAULT/customer/campaign/available \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Warning

Calling this endpoint is meaningful only when you call it with an authorization token that belongs to the logged-in customer.
Otherwise, it will return a 403 Forbidden error response.

Example Response

STATUS: 200 OK

{
 "campaigns": [
 {
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd92",
 "reward": "discount_code",
 "name": "for test",
 "active": true,
 "costInPoints": 10,
 "singleCoupon": false,
 "unlimited": false,
 "limit": 10,
 "limitPerUser": 2,
 "campaignActivity": {
 "allTimeActive": true
 },
 "campaignVisibility": {
 "allTimeVisible": true
 },
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0",
 "e82c96cf-32a3-43bd-9034-4df343e5fd94": "level1",
 "000096cf-32a3-43bd-9034-4df343e5fd94": "level2",
 "0f0d346e-9fd0-492a-84aa-2a2b61419c97": "level3"
 },
 "usageLeft": 1,
 "usageLeftForCustomer": 1,
 "canBeBoughtByCustomer": true,
 "visibleForCustomersCount": 6,
 "usersWhoUsedThisCampaignCount": 0
 }
],
 "total": 1
}

Get all campaigns bought by a logged-in customer

To get all campaigns bought by a logged-in customer, use the /api/<storeCode>/customer/campaign/bought endpoint with the POST method.

Definition

GET /api/<storeCode>/customer/campaign/bought

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	includeDetails

	query

	(optional) Include details about bought campaign
For example 1

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = firstName

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/customer/campaign/bought \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Warning

Calling this endpoint is meaningful only when you call it with an authorization token that belongs to the logged-in customer.
Otherwise, it will return a 403 Forbidden error response.

Example Response

STATUS: 200 OK

{
 "campaigns": [
 {
 "purchaseAt": "2018-01-30T18:23:24+0100",
 "costInPoints": 20,
 "campaignId": {
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93"
 },
 "used": false,
 "coupon": {
 "code": "123"
 }
 }
],
 "total": 1
}

Example

curl http://localhost:8181/api/DEFAULT/customer/campaign/bought \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "includeDetails=1"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Warning

Calling this endpoint is meaningful only when you call it with an authorization token that belongs to the logged-in customer.
Otherwise, it will return a 403 Forbidden error response.

Example Response

STATUS: 200 OK

{
 "campaigns": [
 {
 "purchaseAt": "2018-01-30T18:23:24+0100",
 "costInPoints": 20,
 "campaignId": {
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93"
 },
 "campaign": {
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "reward": "discount_code",
 "name": "tests",
 "active": true,
 "costInPoints": 20,
 "singleCoupon": false,
 "unlimited": false,
 "limit": 10,
 "limitPerUser": 2,
 "campaignActivity": {
 "allTimeActive": true
 },
 "campaignVisibility": {
 "allTimeVisible": true
 },
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0",
 "e82c96cf-32a3-43bd-9034-4df343e5fd94": "level1",
 "000096cf-32a3-43bd-9034-4df343e5fd94": "level2",
 "0f0d346e-9fd0-492a-84aa-2a2b61419c97": "level3"
 },
 "usageLeft": 0,
 "visibleForCustomersCount": 6,
 "usersWhoUsedThisCampaignCount": 1
 },
 "used": false,
 "coupon": {
 "code": "123"
 }
 }
],
 "total": 1
}

Validate reward campaigns (admin)

To validate campaign rewards, you need to call the /api/{storeCode}/admin/customer/{customer}/campaign/validate endpoint with the POST method.

Definition

POST /api/{storeCode}/admin/customer/{customer}/campaign/validate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store

	customer

	request

	Customer ID

	additionalPoints

	query

	Number of points to be taken during simulation
(customer’s balance + additional points).

	campaigns[][rewardCampaignId]

	query

	Reward Campaign’s id to validate. On entry validate one usage.

Example

curl http://openloyalty.localhost/api/DEFAULT/admin/customer/00000000-0000-474c-b092-b0dd880c07e1/campaign/validate \
 -X POST
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 -H "Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJSU..." \
 -d '{
 "campaigns": {
 "additionalPoints": 100,
 "campaigns": [
 { "rewardCampaignId": "000096cf-6361-4d70-e169-676e00000001" },
 { "rewardCampaignId": "000096cf-6361-4d70-e169-676e00000001" },
 { "rewardCampaignId": "000096cf-6361-4d70-e169-676e00000003" }
]
 }
 }'

Note

The eyJ0eXAiOiJKV1QiLCJhbGciOiJSU… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The campaigns collection can contains several duplicated reward campaign IDs to validate several usage.

Example Response

STATUS: 200 OK

{
 "campaigns": [
 {
 "rewardCampaignId": "000096cf-6361-4d70-e169-676e00000001",
 "usageLimitAvailable": true
 },
 {
 "rewardCampaignId": "000096cf-6361-4d70-e169-676e00000001",
 "usageLimitAvailable": false
 },
 {
 "rewardCampaignId": "000096cf-6361-4d70-e169-676e00000003",
 "usageLimitAvailable": true
 }
],
 "additionalPoints": 100.0,
 "finalUsageLimitAvailable": false,
 "balancePointsAvailable": true
}

Validate reward campaigns (customer)

To validate campaign rewards as a customer, you need to call the /api/{storeCode}/customer/campaign/validate endpoint with the POST method.

Definition

POST /api/{storeCode}/customer/campaign/validate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store

	additionalPoints

	query

	Number of points to be taken during simulation
(customer’s balance + additional points).

	campaigns[][rewardCampaignId]

	query

	Reward Campaign’s id to validate. On entry validate one usage.

Example

curl http://openloyalty.localhost/api/DEFAULT/customer/campaign/validate \
 -X POST
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 -H "Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJSU..." \
 -d '{
 "campaigns": {
 "additionalPoints": 100,
 "campaigns": [
 { "rewardCampaignId": "000096cf-6361-4d70-e169-676e00000001" },
 { "rewardCampaignId": "000096cf-6361-4d70-e169-676e00000001" },
 { "rewardCampaignId": "000096cf-6361-4d70-e169-676e00000003" }
]
 }
 }'

Note

The eyJ0eXAiOiJKV1QiLCJhbGciOiJSU… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The campaigns collection can contains several duplicated reward campaign IDs to validate several usage.

Example Response

STATUS: 200 OK

{
 "campaigns": [
 {
 "rewardCampaignId": "000096cf-6361-4d70-e169-676e00000001",
 "usageLimitAvailable": true
 },
 {
 "rewardCampaignId": "000096cf-6361-4d70-e169-676e00000001",
 "usageLimitAvailable": false
 },
 {
 "rewardCampaignId": "000096cf-6361-4d70-e169-676e00000003",
 "usageLimitAvailable": true
 }
],
 "additionalPoints": 100.0,
 "finalUsageLimitAvailable": false,
 "balancePointsAvailable": true
}

Mark multiple coupons as used/unused by a customer.

Mark customer coupons as used/unused using the /api/<storeCode>/admin/campaign/coupons/mark_as_used endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/campaign/coupons/mark_as_used

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	coupons[][campaignId]

	request

	Campaign UUID

	coupons[][couponId]

	request

	Coupon UUID

	coupons[][code]

	request

	Coupon code

	coupons[][used]

	request

	Is coupon used, 1 if true, 0 if not used

	coupons[][transactionId]

	request

	(optional) Transaction ID for which coupon has been used

	coupons[][customerId]

	request

	Customer UUID

Example

curl http://localhost:8181/api/DEFAULT/admin/campaign/coupons/mark_as_used \
 -X "POST" -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "coupons[0][campaignId]=f1eddc46-e985-43e8-bc2a-8007dca3df95" \
 -d "coupons[0][couponId]=83d6a65e-d237-4049-84aa-bb107cd6f9a4" \
 -d "coupons[0][code]=test1" \
 -d "coupons[0][used]=1" \
 -d "coupons[0][customerId]=00000000-0000-474c-b092-b0dd880c07e1" \
 -d "coupons[0][campaignId]=f1eddc46-e985-43e8-bc2a-8007dca3df95" \
 -d "coupons[0][couponId]=6a2456ec-49b3-4970-9ac4-75ca01eab0ee" \
 -d "coupons[0][code]=test2" \
 -d "coupons[0][used]=1" \
 -d "coupons[0][customerId]=00000000-0000-474c-b092-b0dd880c07e1"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The campaignId = f1eddc46-e985-43e8-bc2a-8007dca3df95 id is an example value. Your value may be different.

Note

The couponId = 6a2456ec-49b3-4970-9ac4-75ca01eab0ee id is an example value. Your value may be different.

Note

The customerId = 00000000-0000-474c-b092-b0dd880c07e1 id is an example value. Your value may be different.

Example Response

STATUS: 200 OK

{
 "coupons": [
 {
 "name": "test1",
 "used": true,
 "campaignId": "f1eddc46-e985-43e8-bc2a-8007dca3df95",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1"
 },
 {
 "name": "test2",
 "used": true,
 "campaignId": "f1eddc46-e985-43e8-bc2a-8007dca3df95",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1"
 }
]
}

Mark a logged-in customer’s coupons as used

Mark coupons bought by a logged-in customer as used using the /api/<storeCode>/customer/campaign/coupons/mark_as_used endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/campaign/coupons/mark_as_used

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	coupons[][campaignId]

	request

	Campaign UUID

	coupons[][couponId]

	request

	Coupon UUID

	coupons[][code]

	request

	Coupon code

	coupons[][used]

	request

	Is coupon used, 1 if true, 0 if not used

	coupons[][transactionId]

	request

	(optional) Transaction ID for which coupon has been used

Example

curl http://localhost:8181/api/DEFAULT/customer/campaign/coupons/mark_as_used \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "coupons[0][campaignId]=00000000-0000-0000-0000-000000000001" \
 -d "coupons[0][couponId]=00000000-0000-0000-0000-000000000002" \
 -d "coupons[0][code]=WINTER" \
 -d "coupons[0][used]=1" \
 -d "coupons[0][transactionId]=00000000-0000-0000-0000-000000000003"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The campaignId = 00000000-0000-0000-0000-000000000001, couponId = 00000000-0000-0000-0000-000000000002,
transactionId = 00000000-0000-0000-0000-000000000003 are example values. Your values can be different.

Example Response

STATUS: 200 OK

{
 "coupons": [
 {
 "name": "123",
 "used": true,
 "campaignId": "00000000-0000-0000-0000-000000000001",
 "customerId": "00000000-0000-0000-0000-000000000004"
 }
]
}

Example Error Response

If there are no more coupons left, you will receive the following responses.

STATUS: 400 Bad Request

{
 "error": {
 "code": 400,
 "message": "Bad Request"
 }
}

Buy a campaign by the logged-in customer

To buy a campaign bought by the logged-in customer, use /api/<storeCode>/customer/campaign/{campaign}/buy endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/campaign/<campaign>/buy

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	campaign

	request

	Campaign UUID

	quantity

	query

	(optional) default 1 - number
of coupons to buy (not valid for
cashback and percentage_discount_code)

Example

curl http://localhost:8181/api/DEFAULT/customer/campaign/000096cf-32a3-43bd-9034-4df343e5fd92/buy
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Warning

Calling this endpoint is meaningful only when you call it with an authorization token that belongs to the logged-in customer.
Otherwise, it will return a 403 Forbidden error response.

Example Response

STATUS: 200 OK

{
 "coupons": [{
 "code": "123",
 "id": "ceb169c7-4fe2-4b49-9f2a-5a18634d7236"
 }]
}

Example Error Response

If there are no more coupons left, you will receive the following responses.

STATUS: 400 Bad Request

{
 "error": "No coupons left"
}

Example Error Response

If you don’t have enough points to buy a reward, you will receive following responses.

STATUS: 400 Bad Request

{
 "error": "Not enough points"
}

Get all campaigns bought by a customer (seller)

To retrieve a list of rewards bought by a specific customer, use the /api/<storeCode>/seller/customer/{customer}/campaign/bought endpoint with the GET method.

Definition

GET /api/<storeCode>/seller/customer/<customer>/campaign/bought

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	request

	Customer UUID

	includeDetails

	query

	(optional) Include details about bought campaign
For example 1

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = firstName

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/seller/customer/00000000-0000-474c-b092-b0dd880c07e1/campaign/bought \
 -X "GET" \
 -H "Accept:application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The customer = 00000000-0000-474c-b092-b0dd880c07e1 id is an example value. Your value may be different.
Check the list of all customers if you are not sure which id should be used.

Note

When using endpoints starting with /api/<storeCode>/seller, you need to authorize using seller account credentials.

Note

As a seller, you will receive less information about campaigns than an administrator.

Example Response

STATUS: 200 OK

{
 "campaigns": [],
 "total": 0
}

Example Response

STATUS: 200 OK

{
 "campaigns": [
 {
 "purchaseAt": "2018-01-30T18:23:24+0100",
 "costInPoints": 20,
 "campaignId": {
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93"
 },
 "used": false,
 "coupon": {
 "code": "123"
 }
 }
],
 "total": 1
}

Example

curl http://localhost:8181/api/DEFAULT/seller/customer/00000000-0000-474c-b092-b0dd880c07e1/campaign/bought \
 -X "GET" -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "includeDetails=1" \
 -d "page=1" \
 -d "perPage=1" \
 -d "sort=used" \
 -d "direction=DESC"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The customer = 00000000-0000-474c-b092-b0dd880c07e1 id is an example value. Your value may be different.
Check the list of all customers if you are not sure which id should be used.

Note

When using endpoints starting with /api/<storeCode>/seller, you need to authorize using seller account credentials.

Note

As a seller, you will receive less information about campaigns than an administrator.

Example Response

STATUS: 200 OK

{
 "campaigns": [
 {
 "purchaseAt": "2018-01-30T18:23:24+0100",
 "costInPoints": 20,
 "campaignId": {
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93"
 },
 "campaign": {
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd93",
 "e82c96cf-32a3-43bd-9034-4df343e5fd94",
 "000096cf-32a3-43bd-9034-4df343e5fd94",
 "0f0d346e-9fd0-492a-84aa-2a2b61419c97"
],
 "segments": [],
 "coupons": [
 "123"
],
 "campaignId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "reward": "discount_code",
 "name": "tests",
 "active": true,
 "costInPoints": 20,
 "singleCoupon": false,
 "unlimited": false,
 "limit": 10,
 "limitPerUser": 2,
 "campaignActivity": {
 "allTimeActive": true
 },
 "campaignVisibility": {
 "allTimeVisible": true
 },
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0",
 "e82c96cf-32a3-43bd-9034-4df343e5fd94": "level1",
 "000096cf-32a3-43bd-9034-4df343e5fd94": "level2",
 "0f0d346e-9fd0-492a-84aa-2a2b61419c97": "level3"
 },
 "usageLeft": 0,
 "visibleForCustomersCount": 6,
 "usersWhoUsedThisCampaignCount": 1
 },
 "used": false,
 "coupon": {
 "code": "123"
 }
 }
],
 "total": 1
}

Customer Earning API

These endpoints will allow you to easily viewing active earning rules.

Note

Each role in the Open Loyalty has individual endpoints to viewing active earning rules.

Return all active earning rules

To view active earning rules, you need to call the /api/<storeCode>/customer/earningRule endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/earningRule

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the earning rules from.

Example

curl http://localhost:8181/api/DEFAULT/customer/earningRule \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXUyJ9..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXUyJ9… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "earningRules": [
 {
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd93"
],
 "segments": [],
 "earningRuleId": "00000000-0000-474c-b092-b0dd880c0121",
 "name": "Facebook like test rule",
 "description": "sth",
 "active": true,
 "startAt": "2018-01-19T09:45:00+0100",
 "endAt": "2018-03-19T09:45:00+0100",
 "allTimeActive": false,
 "usages": [],
 "eventName": "facebook_like",
 "pointsAmount": 100,
 "limit": {},
 "type": "custom_event",
 "usageUrl": "http://backend.openloyalty.test.openloyalty.io/api/v1/earnRule/facebook_like/customer/:customerId",
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0"
 }
 },
 {
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd93"
],
 "segments": [],
 "earningRuleId": "7664138c-b5a4-4dcd-80ba-0049a92166db",
 "name": "name",
 "description": "description",
 "active": true,
 "allTimeActive": true,
 "usages": [],
 "eventName": "custom_event_name",
 "pointsAmount": 1,
 "limit": {
 "active": false
 },
 "type": "custom_event",
 "usageUrl": "http://backend.openloyalty.test.openloyalty.io/api/v1/earnRule/custom_event_name/customer/:customerId",
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0"
 }
 },
 {
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd93"
],
 "segments": [],
 "earningRuleId": "7d482776-318a-48dd-90cd-6b3f06a3f4e8",
 "name": "sdgsdgsdg",
 "description": "description",
 "active": true,
 "allTimeActive": true,
 "usages": [],
 "eventName": "custom_event_name_1",
 "pointsAmount": 1,
 "limit": {
 "active": false
 },
 "type": "custom_event",
 "usageUrl": "http://backend.openloyalty.test.openloyalty.io/api/v1/earnRule/custom_event_name_1/customer/:customerId",
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0"
 }
 }
],
 "currency": "eur"
}

Use a custom event earning rule

To trigger custom event earning rules, you need to call the /api/<storeCode>/customer/earningRule/<eventName> endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/earningRule/<eventName>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the earning rule belongs to.

	eventName

	string

	Name of custom event

Example

curl http://localhost:8181/api/DEFAULT/customer/earningRule/customerAttendedEvent \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXUyJ9..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXUyJ9… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "points": 12
}

Customer Level API

These endpoints will allow you to see Levels for a customer.

Get a complete list of levels

To retrieve a complete list of levels, you need to call the /api/<storeCode>/customer/level endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/level

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the levels of.

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/customer/level \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "levels": [
 {
 "name": "level1",
 "description": "example level",
 "conditionValue": 20,
 "hasPhoto": true
 },
 {
 "name": "level2",
 "description": "example level",
 "conditionValue": 200,
 "hasPhoto": false
 },
],
 "total": 2
}

Customer Points transfers

These endpoints will allow you to see Customer Points transfers list.

List of all logged-in customer points transfer

To retrieve a list of points transfer by a specific customer, use /api/<storeCode>/customer/points/transfer endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/points/transfer

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	state

	query

	Set 1 if always active, otherwise 0

	type

	query

	Current points status: adding or spending

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = firstName

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/customer/points/transfer \
 -X "GET" \
 -H "Accept:application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Attention

Pagination limitation, we can only show 10,000 results. 10,000 is a limit and can be found in the .env file.

Example Response

STATUS: 200 OK

{
 "transfers": [
 {
 "pointsTransferId": "e82c96cf-32a3-43bd-9034-4df343e5f211",
 "accountId": "adbdb586-317b-4bed-8cc0-346199064d45",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "customerFirstName": "John",
 "customerLastName": "Doe",
 "customerEmail": "user@example.com",
 "customerPhone": "11111",
 "createdAt": "2018-01-21T09:45:05+0100",
 "value": 100,
 "state": "active",
 "type": "adding",
 "issuer": "system",
 "expireAt": "2018-02-20T09:45:05+0100"
 },
 {
 "pointsTransferId": "44b4a504-d62e-49c2-8e35-7d8a19d2642e",
 "accountId": "adbdb586-317b-4bed-8cc0-346199064d45",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "customerFirstName": "John",
 "customerLastName": "Doe",
 "customerEmail": "user@example.com",
 "customerPhone": "11111",
 "createdAt": "2018-02-19T09:45:05+0100",
 "value": 6.9,
 "state": "active",
 "type": "adding",
 "transactionId": {
 "transactionId": "00000000-0000-1111-0000-000000000003"
 },
 "issuer": "system",
 "expireAt": "2018-03-21T09:45:05+0100",
 "transactionDocumentNumber": "456"
 }
],
 "total": 2
}

Transfer points between customers

To transfer points owned by a specific customer to another customer, use the /api/<storeCode>/customer/points/p2p-transfer endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/points/p2p-transfer

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customers belong to.

	transfer[receiver]

	string

	Customer ID

	transfer[points]

	float

	Number of point

Example

curl http://localhost:8181/api/DEFAULT/customer/points/p2p-transfer \
 -X "POST" \
 -H "Accept:application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "transfer[receiver]=00000000-0000-474c-b092-b0dd880c07f5" \
 -d "transfer[points]=11"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "pointsTransferId": "5db67ae4-ddc8-4590-ac2d-0b3e0b8f4c7e"
}

Earning Rule

These endpoints will allow you to easily manage Earning Rules.

Get a complete list of earning rules

To retrieve a paginated list of earning rules, you need to call the /api/<storeCode>/earningRule endpoint with the GET method.

Definition

GET /api/<storeCode>/earningRule

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the earning rules of.

	active

	query

	(optional) Possible values: active, inactive

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

To see the first page of all earning rules, use the method below:

Example

curl http://localhost:8181/api/DEFAULT/earningRule \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "earningRules": [
 {
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd93"
],
 "segments": [],
 "earningRuleId": "00000000-0000-474c-b092-b0dd880c0121",
 "name": "Facebook like test rule",
 "description": "sth",
 "active": true,
 "startAt": "2018-01-19T09:45:00+0100",
 "endAt": "2018-03-19T09:45:00+0100",
 "allTimeActive": false,
 "usages": [],
 "eventName": "facebook_like",
 "pointsAmount": 100,
 "limit": {},
 "type": "custom_event",
 "hasPhoto": false,
 "usageUrl": "http://backend.openloyalty.test.openloyalty.io/api/v1/earnRule/facebook_like/customer/:customerId",
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0"
 }
 },
 {
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd93"
],
 "segments": [],
 "earningRuleId": "7664138c-b5a4-4dcd-80ba-0049a92166db",
 "name": "name",
 "description": "description",
 "active": true,
 "allTimeActive": true,
 "usages": [],
 "eventName": "custom_event_name",
 "pointsAmount": 1,
 "limit": {
 "active": false
 },
 "type": "custom_event",
 "hasPhoto": false,
 "usageUrl": "http://backend.openloyalty.test.openloyalty.io/api/v1/earnRule/custom_event_name/customer/:customerId",
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0"
 }
 }
],
 "total": 2
}

Get earning rule details

To retrieve a specific earning rule’s details, you need to call the /api/<storeCode>/earningRule/<earningRule> endpoint with the GET method.

Definition

GET /api/<storeCode>/earningRule/<earningRule>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the earning rule from.

	<earningRule>

	query

	earningRule ID

Example

To see details of the earning rule with id earningRule = 00000000-0000-474c-b092-b0dd880c0121, use the method below:

curl http://localhost:8181/api/DEFAULT/earningRule/00000000-0000-474c-b092-b0dd880c0121 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The earningRule = 00000000-0000-474c-b092-b0dd880c0121 id is an example value. Your value may be different.
Check the list of all earning rules if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd93"
],
 "segments": [],
 "earningRuleId": "00000000-0000-474c-b092-b0dd880c0121",
 "name": "Facebook like test rule",
 "description": "sth",
 "active": true,
 "startAt": "2018-01-19T09:45:00+0100",
 "endAt": "2018-03-19T09:45:00+0100",
 "allTimeActive": false,
 "usages": [],
 "eventName": "facebook_like",
 "pointsAmount": 100,
 "limit": {},
 "type": "custom_event",
 "hasPhoto": false,
 "usageUrl": "http://backend.openloyalty.test.openloyalty.io/api/v1/earnRule/facebook_like/customer/:customerId",
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0"
 }
}

Get earning rule details (seller)

To retrieve a page of earning rule details, you need to call the /api/<storeCode>/seller/earningRule/<earningRule> endpoint with the GET method.

Definition

GET /api/<storeCode>/seller/earningRule/<earningRule>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the earning rule from.

	<earningRule>

	query

	earningRule ID

Example

To see the earning rule with id earningRule = 00000000-0000-474c-b092-b0dd880c0725, use the method below:

curl http://localhost:8181/api/DEFAULT/seller/earningRule/00000000-0000-474c-b092-b0dd880c0725 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The earningRule = 00000000-0000-474c-b092-b0dd880c0725 id is an example value. Your value may be different.
Check the list of all earning rules if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "levels": [
 "000096cf-32a3-43bd-9034-4df343e5fd93"
],
 "segments": [],
 "earningRuleId": "00000000-0000-474c-b092-b0dd880c0725",
 "name": "Newsletter subscription test rule",
 "description": "sth",
 "active": false,
 "startAt": "2018-01-19T09:45:00+0100",
 "endAt": "2018-03-19T09:45:00+0100",
 "allTimeActive": false,
 "usages": [],
 "eventName": "oloy.customer.newsletter_subscription",
 "pointsAmount": 85,
 "type": "event",
 "hasPhoto": false,
 "segmentNames": [],
 "levelNames": {
 "000096cf-32a3-43bd-9034-4df343e5fd93": "level0"
 }
}

Create a new earning rule

To create a new earning rule, you need to call the /api/<storeCode>/earningRule endpoint with the POST method.

Definition

POST /api/<storeCode>/earningRule

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to create the earning rule in.

	earningRule[type]

	request

	The type of earning points. Possible types: Custom event rule, Customer
Referral, Event Rule, General spending rule, Multiple earned points,
Product Purchase, Multiple by product labels

	earningRule[rewardType]

	request

	Who will be rewarded. Possible types:
referred,referrer, both

	earningRule[name]

	request

	EarningRule name

	earningRule[description]

	request

	A short description

	earningRule[endAt]

	request

	earningRule visible to YYYY-MM-DD HH:mm, e.g.: 2019-10-05 10:59.
(required only if ``allTimeActive=0``)

	earningRule[startAt]

	request

	earningRule visible from YYYY-MM-DD HH:mm, e.g.: 2017-10-05 10:59.
(required only if ``allTimeActive=0``)

	earningRule[active]

	request

	Set 1 if active, otherwise 0

	earningRule[pointsAmount]

	request

	How many points customer can earn

	earningRule[target]

	request

	Set level to choose target from defined levels.
Set segment to choose target from defined segments

	earningRule[levels]

	request

	Array of level IDs. (required only if ``target=level``)

	earningRule[segments]

	request

	Array of segment IDs. (required only if ``target=segment``)

	earningRule[limit][active]

	request

	Set 1 if usage limit active, otherwise 0

	earningRule[limit][period]

	request

	Period usage limit. (required only if ``[limit][active]=1``)
Possible parameters: day,week,month,3months,6months,year,forever

	earningRule[limit][limit]

	request

	Usage limit. (required only if ``[limit][active]=1``)

	earningRule[eventName]

	request

	Custom Event name

	earningRule[allTimeActive]

	request

	Set 1 if always visible, otherwise 0

	earningRule[excludeDeliveryCost]

	request

	Points will not be calculated for delivery cost. Set 1 to active,
otherwise 0

	earningRule[excludedSKUs]

	request

	Excluding products with the given SKU

	earningRule[minOrderValue]

	request

	Points will not be calculated for whole purchase if its value will be
below value

	earningRule[inclusionType]

	request

	Accepted values: [include_labels, exclude_labels]. If include_labels is
set - includedLabels will be used.
if exclude_labels is set - excludedLabels will be used.

	earningRule[excludedLabels]

	request

	Points will not be calculated for the purchase of products with defined
labels

	earningRule[includedLabels]

	request

	Points will be calculated only for the purchase of products with defined
labels

	earningRule[multiplier]

	request

	Points gained for product purchase will be multiplied by this factor

	earningRule[labelMultipliers]

	request

	Points gained for product purchase by labels will be multiplied

	earningRule[skuIds][0]

	request

	Refers to products with the given SKU

Example

curl http://localhost:8181/api/DEFAULT/earningRule \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "earningRule[active]=1" \
 -d "earningRule[type]=event" \
 -d "earningRule[description]=test" \
 -d "earningRule[endAt]=2018-03-19+09:45" \
 -d "earningRule[eventName]=oloy.customer.logged_in" \
 -d "earningRule[levels][0]=000096cf-32a3-43bd-9034-4df343e5fd93" \
 -d "earningRule[name]=nowy+rule" \
 -d "earningRule[pointsAmount]=5" \
 -d "earningRule[segments]=[+]" \
 -d "earningRule[startAt]=2019-03-19+09:45" \
 -d "earningRule[target]=level" \
 -d "earningRule[limit][active]=1" \
 -d "earningRule[limit][period]=month" \
 -d "earningRule[limit][limit]=5" \
 -d "earningRule[rewardType]=both" \
 -d "earningRule[allTimeActive]=0" \
 -d "earningRule[excludeDeliveryCost]=true" \
 -d "earningRule[excludedSKUs]=123" \
 -d "earningRule[minOrderValue]=2" \
 -d "earningRule[inclusionType]=exclude_labels" \
 -d "earningRule[excludedLabels]=1:1" \
 -d "earningRule[multiplier]=2" \
 -d "earningRule[skuIds][0]=SKU123"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The 000096cf-32a3-43bd-9034-4df343e5fd93 or 00000000-0000-474c-b092-b0dd880c0121 id are example values.
Your value may be different. Check the list of all levels if you are not sure which id should be used.

Example Response

STATUS: 200 OK

Edit an existing earning rule

To edit an existing earning rule, you need to call the /api/<storeCode>/earningRule/<earningRule> endpoint with the PUT method.

Definition

PUT /api/<storeCode>/earningRule/<earningRule>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the updated earning rule belongs to.

	<earningRule>

	query

	EarningRule ID

	earningRule[type]

	request

	The type of earning points. Possible types: Custom event rule, Customer
Referral, Event Rule, General spending rule, Multiple earned points,
Product Purchase, Multiple by product labels

	earningRule[rewardType]

	request

	Who will be rewarded. Possible types:
referred,referrer, both

	earningRule[name]

	request

	Earning Rule name

	earningRule[description]

	request

	A short description

	earningRule[endAt]

	request

	earningRule visible to YYYY-MM-DD HH:mm, e.g.: 2019-10-05 10:59.
(required only if ``allTimeActive=0``)

	earningRule[startAt]

	request

	earningRule visible from YYYY-MM-DD HH:mm, e.g.: 2017-10-05 10:59.
(required only if ``allTimeActive=0``)

	earningRule[active]

	request

	Set 1 if active, otherwise 0

	earningRule[pointsAmount]

	request

	How many points customer can earn

	earningRule[target]

	request

	Set level to choose target from defined levels.
Set segment to choose target from defined segments

	earningRule[levels]

	request

	Array of level IDs. (required only if ``target=level``)

	earningRule[segments]

	request

	Array of segment IDs. (required only if ``target=segment``)

	earningRule[limit][active]

	request

	Set 1 if usage limit active, otherwise 0

	earningRule[limit][period]

	request

	Period usage limit. (required only if ``[limit][active]=1``)

	earningRule[limit][limit]

	request

	Usage limit. (required only if ``[limit][active]=1``)

	earningRule[eventName]

	request

	Custom Event name

	earningRule[allTimeActive]

	request

	Set 1 if always visible, otherwise 0

	earningRule[excludeDeliveryCost]

	request

	Points will not be calculated for delivery cost. Set 1 to active,
otherwise 0

	earningRule[excludedSKUs]

	request

	Excluding products with the given SKU

	earningRule[minOrderValue]

	request

	Points will not be calculated for whole purchase if its value will be
below value

	earningRule[inclusionType]

	request

	Accepted values: [include_labels, exclude_labels]. If include_labels is
set - includedLabels will be used.
if exclude_labels is set - excludedLabels will be used.

	earningRule[excludedLabels]

	request

	Points will not be calculated for the purchase of products with defined
labels

	earningRule[includedLabels]

	request

	Points will be calculated only for the purchase of products with defined
labels

	earningRule[multiplier]

	request

	Points gained for product purchase will be multiplied by this factor

	earningRule[labelMultipliers]

	request

	Points gained for product purchase by labels will be multiplied

	earningRule[skuIds][0]

	request

	Refers to products with the given SKU

Example

To fully update an earning rule with id earningRule = 00000000-0000-474c-b092-b0dd880c0121, use the method below:

curl http://localhost:8181/api/DEFAULT/earningRule/00000000-0000-474c-b092-b0dd880c0121 \
 -X "PUT" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "earningRule[active]=1" \
 -d "earningRule[type]=event" \
 -d "earningRule[description]=something" \
 -d "earningRule[endAt]=2018-03-19+09:45" \
 -d "earningRule[eventName]=facebook_like" \
 -d "earningRule[levels][0]=000096cf-32a3-43bd-9034-4df343e5fd93" \
 -d "earningRule[name]=Facebook+like+test+rule" \
 -d "earningRule[pointsAmount]=9" \
 -d "earningRule[segments]=[+]" \
 -d "earningRule[startAt]=2019-03-19+09:45" \
 -d "earningRule[target]=level" \
 -d "earningRule[limit][active]=1" \
 -d "earningRule[limit][period]=month" \
 -d "earningRule[limit][limit]=5" \
 -d "earningRule[rewardType]=both" \
 -d "earningRule[allTimeActive]=0" \
 -d "earningRule[excludeDeliveryCost]=true" \
 -d "earningRule[excludedSKUs]=123" \
 -d "earningRule[minOrderValue]=2" \
 -d "earningRule[inclusionType]=exlude_labels" \
 -d "earningRule[excludedLabels]=1:1" \
 -d "earningRule[multiplier]=2" \
 -d "earningRule[skuIds][0]=SKU123"

Warning

Remember, you must update the all data of the earningRule.

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The 000096cf-32a3-43bd-9034-4df343e5fd93 or 00000000-0000-474c-b092-b0dd880c0121 id are example values.
Your value may be different. Check the list of all levels if you are not sure which id should be used.

Example Response

STATUS: 200 OK

{
 "earningRuleId": "00000000-0000-474c-b092-b0dd880c0121"
}

Change earning rule status

To make an earning rule active or inactive, you need to call the /api/<storeCode>/earningRule/<earningRule>/activate endpoint with the POST method.

Definition

POST /api/<storeCode>/earningRule/<earningRule>/activate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the updated earning rule belongs to.

	<earningRule>

	query

	earningRule ID

	active

	request

	Possible values: active, inactive

Example

To make the earning rule earningRule = 7d482776-318a-48dd-90cd-6b3f06a3f4e8 active, use the method below:

curl http://localhost:8181/api/DEFAULT/earningRule/7d482776-318a-48dd-90cd-6b3f06a3f4e8/active \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "active=1"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The earningRule = 7d482776-318a-48dd-90cd-6b3f06a3f4e8 id is an example value. Your value may be different.
Check the list of all earningRules if you are not sure which id should be used.

Example Response

STATUS: 204 No Content

Get an earning rule’s photo

To get an earning rule’s photo, you need to call the /api/<storeCode>/earningRule/<earningRule>/photo endpoint with the GET method.

Definition

GET /api/<storeCode>/earningRule/<earningRule>/photo

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the earning rule belongs to.

	<earningRule>

	query

	Earning rule ID

Example

To get the photo for earning rule earningRule = 000096cf-32a3-43bd-9034-4df343e5fd93, use the method below:

curl http://localhost:8181/api/DEFAULT/earningRule/000096cf-32a3-43bd-9034-4df343e5fd93/photo \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The earningRule = 000096cf-32a3-43bd-9034-4df343e5fd93 id is an example value. Your value may be different.
Check the list of all earning rules if you are not sure which id should be used.

Example Response

STATUS: 200 OK

Note

In the response you will get raw file content with a proper Content-Type header, for example:
Content-Type: image/jpeg.

Example Response

The earning rule may not have a photo at all and you will receive the following response:

STATUS: 404 Not Found

{
 "error": {
 "code": 404,
 "message": "Not Found"
 }
}

Remove an earning rule’s photo

To remove an earning rule’s photo, you need to call the /api/<storeCode>/earningRule/<earningRule>/photo endpoint with the DELETE method.

Definition

DELETE /api/<storeCode>/earningRule/<earningRule>/photo

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the earning rule belongs to.

	<earningRule>

	query

	Earning rule ID

Example

To remove the photo for earning rule earningRule = 000096cf-32a3-43bd-9034-4df343e5fd93, use the method below:

curl http://localhost:8181/api/DEFAULT/earningRule/000096cf-32a3-43bd-9034-4df343e5fd93/photo \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The earningRule = 000096cf-32a3-43bd-9034-4df343e5fd93 id is an example value. Your value may be different.
Check the list of all earning rules if you are not sure which id should be used.

Example Response

STATUS: 200 OK

Add a photo to an earning rule

To add a photo to an earning rule, you need to call the /api/<storeCode>/earningRule/<earningRule>/photo endpoint with the POST method.

Definition

POST /api/<storeCode>/earningRule/<earningRule>/photo

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the earning rule belongs to.

	<earningRule>

	query

	Earning rule ID

	photo[file]

	request

	Absolute path to the photo

Example

To add a photo to earning rule earningRule = 000096cf-32a3-43bd-9034-4df343e5fd93, use the method below:

curl http://localhost:8181/api/DEFAULT/earningRule/000096cf-32a3-43bd-9034-4df343e5fd93/photo \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "photo[file]=C:\fakepath\Photo.png"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The earningRule = 000096cf-32a3-43bd-9034-4df343e5fd93 id is an example value. Your value may be different.
Check the list of all earning rules if you are not sure which id should be used.

Note

The photo[file]=C:fakepathPhoto.png is an example value. Your value may be different.

Example Response

STATUS: 200 OK

QR code

This method allows calculating points using QR codes.
You need to call the /api/<storeCode>/earningRule/qrcode/customer/<customer> endpoint with the POST method.

Definition

POST /api/<storeCode>/earningRule/qrcode/customer/<customer>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the earning rule and customer belong to.

	<customer>

	query

	Customer ID

	earningRule[code]

	request

	QR code

	earningRule[earningRuleId]

	request

	(optional) UUID of the earning rule. If specified, only this one
rule will be executed.
If omitted, all rules applicable to the customer will be executed

Example Response

curl http://localhost:8181/api/DEFAULT/earningRule/qrcode/customer/00000000-0000-474c-b092-b0dd880c07e1 \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "earningRule[code]=abccode" \
 -d "earningRule[earningRuleId]=e378c813-2116-448a-b125-564cef15f932"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The 00000000-0000-474c-b092-b0dd880c07e1 customer UUID, e378c813-2116-448a-b125-564cef15f932 earning rule UUID, abccode qr code are example values.
Your values can be different.

STATUS: 200 OK

{
 "points": 10
}

Geolocation

To calculate points using geolocation, you need to call the /api/<storeCode>/earningRule/geolocation/customer/<customer> endpoint with the POST method.

Definition

POST /api/<storeCode>/earningRule/geolocation/customer/<customer>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the earning rule and the customer belong to.

	<customer>

	query

	Customer ID

	earningRule[latitude]

	body

	Current customer’s latitude. Positive and negative values can be used.

	earningRule[longitude]

	body

	Current customer’s latitude. Positive and negative values can be used.

	earningRule[earningRuleId]

	query

	(optional) UUID of the earning rule. If specified, only this one
geo rule will be executed.
If comitted, all rules applicable to the customer will be executed

Example Response

curl http://localhost:8181/api/DEFAULT/earningRule/geolocation/customer/00000000-0000-474c-b092-b0dd880c07e1 \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "earningRule[latitude]=52.052240"
 -d "earningRule[longitude]=-21.046587"
 -d "earningRule[earningRuleId]=51283523-0760-474b-8c08-4ccd2b3a0f41"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The 00000000-0000-474c-b092-b0dd880c07e1 customer UUID, 83fe084b-3682-4ddb-bc10-c3c2373dfbcc earning rule UUID,
52.052240, -21.046587 coordinates are example values.
Your values can be different.

STATUS: 200 OK

{
 "points": 1
}

Invitation

These endpoints will allow you to easily manage Invitations.

Get a complete list of invitations

To retrieve a paginated list of invitations, you need to call the /api/<storeCode>/invitations endpoint with the GET method.

Definition

GET /api/<storeCode>/invitations

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get invitations list from.

	referrerId

	query

	(optional) Referrer ID

	referrerEmail

	query

	(optional) Referrer Email

	referrerName

	query

	(optional) Referrer Name

	recipientId

	query

	(optional) Recipient ID

	recipientEmail

	query

	(optional) Recipient Email

	recipientPhone

	query

	(optional) Recipient Phone

	recipientName

	query

	(optional) Recipient Name

	status

	query

	(optional) Possible values: All, Invited,
Made purchase, Registered

Example

curl http://localhost:8181/api/DEFAULT/invitations \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "invitations": [
 {
 "referrerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "recipientId": "",
 "invitationId": "22200000-0000-474c-b092-b0dd880c07e2",
 "referrerEmail": "user@example.com",
 "referrerName": "John Doe",
 "recipientEmail": "test2@example.com",
 "status": "invited",
 "token": "8e3889f08265ec0c81e511e23cab94200a7d18b7"
 },
 {
 "referrerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "recipientId": "",
 "invitationId": "22200000-0000-474c-b092-b0dd880c07e3",
 "referrerEmail": "user@example.com",
 "referrerName": "John Doe",
 "recipientEmail": "test3@example.com",
 "status": "invited",
 "token": "575c0f0435d0970853b25b967378c4155c8c0843"
 },
 {
 "referrerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "recipientId": "",
 "invitationId": "22200000-0000-474c-b092-b0dd880c07e1",
 "referrerEmail": "user@example.com",
 "referrerName": "John Doe",
 "recipientEmail": "test1@example.com",
 "status": "invited",
 "token": "ebea0309e2ca40f45b11537694270df8fc7161b7"
 },
 {
 "referrerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "recipientId": "",
 "invitationId": "22200000-0000-474c-b092-b0dd880c07e4",
 "referrerEmail": "user@example.com",
 "referrerName": "John Doe",
 "recipientEmail": "test4@example.com",
 "status": "invited",
 "token": "1042654f4acd5099f54286acbb10d668173a95d0"
 }
],
 "total": 4
}

Points transfers

These endpoints will allow you to easily manage Points transfers.

Get a complete list of Points transfers

To retrieve a paginated list of Points transfers, you need to call the /api/<storeCode>/points/transfer endpoint with the GET method.

Definition

GET /api/<storeCode>/points/transfer

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get points transfers from.

	customerFirstName

	query

	(optional) First Name

	customerLastName

	query

	(optional) Last Name

	customerPhone

	query

	(optional) Customer Phone

	customerEmail

	query

	(optional) Customer Email

	customerId

	query

	(optional) Customer ID

	state[]

	query

	(optional) Possible values: active, expired

	type

	query

	(optional) Possible values: adding, spending,
p2p_adding, p2p_spending

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/points/transfer \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Attention

Pagination limitation, we can only show 10,000 results. 10,000 is a limit and can be found in the .env file.

Example Response

STATUS: 200 OK

{
 "transfers": [
 {
 "pointsTransferId": "ae1c49b1-02ab-4626-982d-71b544b01136",
 "accountId": "49a218ab-71ba-4f7f-8f4e-407df5f84b11",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "customerFirstName": "John",
 "customerLastName": "Doe",
 "customerLoyaltyCardNumber": "47834433524",
 "customerEmail": "user@example.com",
 "customerPhone": "+48234234000",
 "createdAt": "2018-09-13T16:37:33+0200",
 "expiresAt": "2018-10-13T16:37:33+0200",
 "value": 10,
 "state": "active",
 "type": "adding",
 "comment": "Event - First Purchase - 10",
 "issuer": "system"
 },
 {
 "pointsTransferId": "932ac81c-5f09-4b2e-87f5-1c465e40fb39",
 "accountId": "10475944-a7fd-4960-9304-216620349a44",
 "customerId": "fbbc7158-b033-45d4-8c5a-1f14d5b9d07b",
 "customerFirstName": "John",
 "customerLastName": "Doe",
 "customerLoyaltyCardNumber": "99000002222249",
 "customerEmail": "user@example.com",
 "createdAt": "2021-12-31T08:24:17+01:00",
 "expiresAt": "2022-01-30T23:59:59+01:00",
 "value": 499.0,
 "state": "active",
 "type": "adding",
 "invitationId": "054af48a-e965-4d61-84ac-9b9304115c9a",
 "comment": "Referring customer",
 "issuer": "system",
 "store": {
 "id": "484635af-cc11-48ae-bf19-8afbe5f31fc7",
 "code": "DEFAULT",
 "currency": "EUR"
 }
 },
 {
 "pointsTransferId": "cd470d77-a08e-4c62-9f47-da180524f683",
 "accountId": "49a218ab-71ba-4f7f-8f4e-407df5f84b11",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "customerFirstName": "John",
 "customerLastName": "Doe",
 "customerLoyaltyCardNumber": "47834433524",
 "customerEmail": "user@example.com",
 "customerPhone": "+48234234000",
 "createdAt": "2018-09-13T16:37:33+0200",
 "expiresAt": "2018-10-13T16:37:33+0200",
 "value": 6.9,
 "state": "active",
 "type": "adding",
 "transactionId": {
 "transactionId": "00000000-0000-1111-0000-000000000003"
 },
 "comment": "General spending rule - 2.3",
 "issuer": "system",
 "transactionDocumentNumber": "456",
 "transaction": {
 "grossValue": 3,
 "labels": [
 {
 "key": "first label",
 "value": "first test"
 },
 {
 "key": "second label",
 "value": "second test"
 }
],
 "items": [
 {
 "sku": {
 "code": "SKU1"
 },
 "name": "item 1",
 "quantity": 1,
 "grossValue": 1,
 "category": "aaa",
 "labels": [
 {
 "key": "test",
 "value": "label"
 },
 {
 "key": "test",
 "value": "label2"
 }
],
 "maker": "sss"
 },
 {
 "sku": {
 "code": "SKU2"
 },
 "name": "item 2",
 "quantity": 2,
 "grossValue": 2,
 "category": "bbb",
 "labels": [],
 "maker": "ccc"
 }
]
 }
 }
],
 "total": 2
}

Get a complete list of points transfers (customer)

To retrieve a paginated list of Points transfers, you need to call the /api/<storeCode>/customer/points/transfer endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/points/transfer

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	state

	query

	(optional) Possible values: active, expired,
pending

	type

	query

	(optional) Possible values: adding, spending

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/customer/points/transfer \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Attention

Pagination limitation, we can only show 10,000 results. 10,000 is a limit and can be found in the .env file.

Example Response

STATUS: 200 OK

{
 "transfers": [
 {
 "pointsTransferId": "ae1c49b1-02ab-4626-982d-71b544b01136",
 "accountId": "49a218ab-71ba-4f7f-8f4e-407df5f84b11",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "customerFirstName": "John",
 "customerLastName": "Doe",
 "customerLoyaltyCardNumber": "47834433524",
 "customerEmail": "user@example.com",
 "customerPhone": "+48234234000",
 "createdAt": "2018-09-13T16:37:33+0200",
 "expiresAt": "2018-10-13T16:37:33+0200",
 "value": 10,
 "state": "active",
 "type": "adding",
 "comment": "Event - First Purchase - 10",
 "issuer": "system"
 },
 {
 "pointsTransferId": "932ac81c-5f09-4b2e-87f5-1c465e40fb39",
 "accountId": "10475944-a7fd-4960-9304-216620349a44",
 "customerId": "fbbc7158-b033-45d4-8c5a-1f14d5b9d07b",
 "customerFirstName": "John",
 "customerLastName": "Doe",
 "customerLoyaltyCardNumber": "99000002222249",
 "customerEmail": "user@example.com",
 "createdAt": "2021-12-31T08:24:17+01:00",
 "expiresAt": "2022-01-30T23:59:59+01:00",
 "value": 499.0,
 "state": "active",
 "type": "adding",
 "invitationId": "054af48a-e965-4d61-84ac-9b9304115c9a",
 "comment": "Referring customer",
 "issuer": "system",
 "store": {
 "id": "484635af-cc11-48ae-bf19-8afbe5f31fc7",
 "code": "DEFAULT",
 "currency": "EUR"
 }
 },
 {
 "pointsTransferId": "cd470d77-a08e-4c62-9f47-da180524f683",
 "accountId": "49a218ab-71ba-4f7f-8f4e-407df5f84b11",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "customerFirstName": "John",
 "customerLastName": "Doe",
 "customerLoyaltyCardNumber": "47834433524",
 "customerEmail": "user@example.com",
 "customerPhone": "+48234234000",
 "createdAt": "2018-09-13T16:37:33+0200",
 "expiresAt": "2018-10-13T16:37:33+0200",
 "value": 6.9,
 "state": "active",
 "type": "adding",
 "transactionId": {
 "transactionId": "00000000-0000-1111-0000-000000000003"
 },
 "comment": "General spending rule - 2.3",
 "issuer": "system",
 "transactionDocumentNumber": "456",
 "transaction": {
 "grossValue": 3,
 "labels": [
 {
 "key": "first label",
 "value": "first test"
 },
 {
 "key": "second label",
 "value": "second test"
 }
],
 "items": [
 {
 "sku": {
 "code": "SKU1"
 },
 "name": "item 1",
 "quantity": 1,
 "grossValue": 1,
 "category": "aaa",
 "labels": [
 {
 "key": "test",
 "value": "label"
 },
 {
 "key": "test",
 "value": "label2"
 }
],
 "maker": "sss"
 },
 {
 "sku": {
 "code": "SKU2"
 },
 "name": "item 2",
 "quantity": 2,
 "grossValue": 2,
 "category": "bbb",
 "labels": [],
 "maker": "ccc"
 }
]
 }
 }
],
 "total": 2
}

Add points to customer’s account

To add points, you need to call the /api/<storeCode>/points/transfer/add endpoint with the POST method.

Definition

POST /api/<storeCode>/points/transfer/add

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	transfer[customer]

	query

	Customer ID

	transfer[points]

	query

	How many points customer can get

	transfer[comment]

	query

	(optional) Comment

Example

curl http://localhost:8181/api/DEFAULT/points/transfer/add \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "transfer[customer]=b9af6a8c-9cc5-4924-989c-e4af614ab2a3" \
 -d "transfer[points]=9"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "pointsTransferId": "32132863-3d1e-4a94-8bb4-6e42e3c96c0b"
}

Spend customer’s points

To spend a customer’s points, you need to call the /api/<storeCode>/points/transfer/spend endpoint with the POST method.

Definition

POST /api/<storeCode>/points/transfer/spend

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	transfer[customer]

	query

	Customer ID

	transfer[points]

	query

	How many points customer can spend

	transfer[comment]

	query

	(optional) Comment

Example

curl http://localhost:8181/api/DEFAULT/points/transfer/spend \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "transfer[customer]=b9af6a8c-9cc5-4924-989c-e4af614ab2a3" \
 -d "transfer[points]=1"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "pointsTransferId": "b97a31fe-9bc9-4fff-a467-487f2c316371"
}

Transfer points between customers (admin)

To transfer points between customers, you need to call the /api/<storeCode>/admin/p2p-points-transfer endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/p2p-points-transfer

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store both customers belong to.

	transfer[sender]

	query

	email/phone or uuid of customer from whom points
will be transferred

	transfer[receiver]

	query

	email/phone or uuid of customer who will get
points

	transfer[points]

	query

	How many points will be transferred

Example

curl http://localhost:8181/api/DEFAULT/admin/p2p-points-transfer \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "transfer[sender]=b9af6a8c-9cc5-4924-989c-e4af614ab2a3" \
 -d "transfer[receiver]=b9af6a8c-9cc5-4924-989c-e4af614ab3c5" \
 -d "transfer[points]=100"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "pointsTransferId": "b97a31fe-9bc9-4fff-a467-487f2c316371"
}

Note

Returned pointsTransferId is a UUID of the P2P spend points transfer created.

Transfer points between customers (customer)

To transfer points between a logged-in customer and another customer, you need to call the /api/<storeCode>/customer/points/p2p-transfer endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/points/p2p-transfer

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store both customers belong to.

	transfer[receiver]

	query

	email/phone or uuid of customer who will get
points

	transfer[points]

	query

	How many points will be transferred

Example

curl http://localhost:8181/api/DEFAULT/customer/points/p2p-transfer \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "transfer[receiver]=b9af6a8c-9cc5-4924-989c-e4af614ab3c5" \
 -d "transfer[points]=100"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "pointsTransferId": "b97a31fe-9bc9-4fff-a467-487f2c316371"
}

Note

Returned pointsTransferId is a UUID of the P2P spend points transfer created.

Cancel specific points transfer

To cancel a specific points transfer, you need to call the /api/<storeCode>/points/transfer/<transfer>/cancel endpoint with the POST method.

Definition

POST /api/<storeCode>/points/transfer/<transfer>/cancel

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the point transfer was made in.

	<transfer>

	query

	Points transfer ID

Example

curl http://localhost:8181/api/DEFAULT/points/transfer/313cf0c1-5376-4f66-9de3-77943760423a/cancel \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

(no content)

Activate specific points transfer

To activate a specific points transfer, you need to call the /api/<storeCode>/points/transfer/<transfer>/activate endpoint with the POST method.

	Requirements:

	
	transfer MUST HAVE state PENDING;

	Results:

	
	transfer will have state ACTIVE and points will be unlocked;

Definition

POST /api/<storeCode>/points/transfer/<transfer>/activate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the point transfer was made in.

	<transfer>

	query

	Points transfer ID

Example

curl http://localhost:8181/api/DEFAULT/points/transfer/313cf0c1-5376-4f66-9de3-77943760423a/activate \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

(no content)

Expire specific points transfer

To expire a specific points transfer, you need to call the /api/<storeCode>/points/transfer/<transfer>/expire endpoint with the POST method.

	Requirements:

	
	transfer MUST HAVE state ACTIVE;

	Results:

	
	transfer will have state EXPIRED and current date in expiredAt;

Definition

POST /api/<storeCode>/points/transfer/<transfer>/expire

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the point transfer was made in.

	<transfer>

	query

	Points transfer ID

Example

curl http://localhost:8181/api/DEFAULT/points/transfer/313cf0c1-5376-4f66-9de3-77943760423a/expire \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

(no content)

Import point transfers

To import a file with points transfers, you need to call the /api/<storeCode>/points/transfer/import endpoint with the POST method.

Definition

POST /api/<storeCode>/points/transfer/import

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the transfers will be made in.

	file[file]

	query

	XML file

Example

curl http://localhost:8181/api/DEFAULT/points/transfer/import \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "file[file]=C:\\fakepath\\points.xml"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "items": [
 {
 "status": "success",
 "processImportResult": {
 "object": {
 "pointsTransferId": "e08cf828-989b-4bd0-8221-cf44c3be8a64"
 }
 },
 "identifier": "11000000-0000-474c-b092-b0dd880c07e2x/(adding 15)"
 }
],
 "totalProcessed": 1,
 "totalSuccess": 1,
 "totalFailed": 0
}

Points transfers histogram

To get information about points transfers histogram, you need to call the /api/<storeCode>/points/transfers endpoint with the GET method.

Definition

GET /api/<storeCode>/points/transfers

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	request

	Filter result by given store

	<interval>

	request

	Group result by (day|month|year)

	<lastDays>

	request

	Display data in last days

	<futureDays>

	request

	Display data to X future days

	<pointType>

	request

	Type of point (earned, spent, expired, pending)

Example

curl http://localhost:8181/api/DEFAULT/points/transfers \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "2018-01-06": 0,
 "2018-01-07": 0,
 "2018-01-08": 0,
 "2018-01-09": 5,
 "2018-01-10": 0,
 "2018-01-11": 5,
 "2018-01-12": 4,
 "2018-01-13": 3,
 "2018-01-14": 0,
 "2018-01-15": 0,
 "2018-01-16": 3,
 "2018-01-17": 0,
 "2018-01-18": 5,
 "2018-01-19": 0,
 "2018-01-20": 6,
 "2018-01-21": 5,
 "2018-01-22": 0,
 "2018-01-23": 6,
 "2018-01-24": 0,
 "2018-01-25": 0,
 "2018-01-26": 0,
 "2018-01-27": 0,
 "2018-01-28": 5,
 "2018-01-29": 0,
 "2018-01-30": 0,
 "2018-01-31": 0,
 "2018-02-01": 0,
 "2018-02-02": 5,
 "2018-02-03": 0,
 "2018-02-04": 0
}

Block points on customer’s account

The administrator can block points on a customer’s account in order to prevent them from spending them. To block points, you need to
call the /api/<storeCode>/points/transfer/block endpoint with the POST method. In order to unblock points, you need to
use the /api/<storeCode>/points/transfer/<transfer>/cancel endpoint.

Definition

POST /api/<storeCode>/points/transfer/block

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	transfer[customer]

	query

	Customer ID

	transfer[points]

	query

	How many points to block

	transfer[comment]

	query

	(optional) Comment

Example

curl http://localhost:8181/api/DEFAULT/points/transfer/block \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "transfer[customer]=b9af6a8c-9cc5-4924-989c-e4af614ab2a3" \
 -d "transfer[points]=9"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "pointsTransferId": "32132863-3d1e-4a94-8bb4-6e42e3c96c0b"
}

Security

These endpoints will allow you to easily manage password and token-related matters.

Password reset request (customer)

Invoking this method will send a message to the user with a password reset URL.
You need to call the /api/<storeCode>/customer/password/reset/request endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/password/reset/request

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	username

	string

	Customer’s e-mail address

Example

curl http://localhost:8181/api/DEFAULT/customer/password/reset/request \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "username=user@example.com"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "success": true
}

Set new password after requesting a new password

To reset the password for a customer who requested a new password,, you need to call the /api/password/reset endpoint with the POST method.

Definition

POST /api/password/reset

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	token

	query

	Token received during resetting the password

	reset[plainPassword]

	query

	New password

Example

curl http://localhost:8181/api/password/reset \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "reset[plainPassword]=example123!@#" \
 -d "token=AIENe11JjR2kj3XGiWuZmQ88gZYAgM7VR5inxtbswaY"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… or AIENe11JjR2kj3XGiWuZmQ8… authorization token are an example value.
Your value may be different. Read more about Authorization here.

Note

Your password must be at least 8 characters long.
Your password must include both upper and lower case letters.
Your password must include at least one number.
Your password must contain at least one special character.

Example Response

STATUS: 200 OK

{
 "success": true
}

Change logged-in customer’s password

To change a logged-in customer’s password, you need to call the /api/<storeCode>/customer/password/change endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/password/change

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	currentPassword

	query

	Current password

	plainPassword

	query

	New password

Example

curl http://localhost:8181/api/DEFAULT/customer/password/change \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "currentPassword=example123!@#" \
 -d "plainPassword=example321!@#"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

Your password must be at least 8 characters long.
Your password must include both upper and lower case letters.
Your password must include at least one number.
Your password must contain at least one special character.

Example Response

STATUS: 200 OK

{
 "success": true
}

Change logged-in admin’s password

To change a logged-in admin’s password, you need to call the /api/<storeCode>/admin/password/change endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/password/change

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to chance password.

	currentPassword

	query

	Current password

	plainPassword

	query

	New password

Example

curl http://localhost:8181/api/DEFAULT/admin/password/change \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "currentPassword=example123!@#" \
 -d "plainPassword=example321!@#"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

Your password must be at least 8 characters long.
Your password must include both upper and lower case letters.
Your password must include at least one number.
Your password must contain at least one special character.

Example Response

STATUS: 200 OK

{
 "success": true
}

Password reset request (admin)

Invoking this method will send a message to the admin user’s email with the password reset URL.
You need to call the /api/password/reset/request endpoint with the POST method.

Definition

POST /api/password/reset/request

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	username

	query

	User name who recovers the password

Example

curl http://localhost:8181/api/password/reset/request \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "username=admin"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "success": true
}

Log out current user

To log out the current user, you need to call the /api/token/revoke endpoint with the GET method.

Definition

GET /api/token/revoke

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

Example

curl http://localhost:8181/api/token/revoke \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

(no content)

Store API

These endpoints will allow you to see the list of stores in Open Loyalty.

Get store details

To retrieve the details of a store, you need to call the /api/store/<store> endpoint with the GET method.

Definition

GET /api/store/<store>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<store>

	query

	Store Id

Example

To see the details of the store with id store = cbc362ae-aa53-46d2-bc98-422ab249ac0b, use the method below:

curl http://localhost:8181/api/store/cbc362ae-aa53-46d2-bc98-422ab249ac0b \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

Translatable fields (name, short description, etc.) are returned in the given locale.

Note

The cbc362ae-aa53-46d2-bc98-422ab249ac0b id is an example value. Your value may be different.
Check the list of all admin users if you are not sure which id should be used.

Example Response

STATUS: 200 OK

Update a store

To update a store, you need to call the /api/store/<store> endpoint with the PUT method.

Definition

PUT /api/store/<store>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<store>

	query

	Store Id

	store[name]

	query

	Store name

store[name] | query | Store name |

Example

To update a store with id store = cbc362ae-aa53-46d2-bc98-422ab249ac0b, use the method below:

curl http://localhost:8181/api/store/cbc362ae-aa53-46d2-bc98-422ab249ac0b \
 -X "PUT" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "store[name] = store_name" \
 -d "store[active] = 0"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

Translatable fields (name, short description etc.) are returned in the given locale.

Note

The cbc362ae-aa53-46d2-bc98-422ab249ac0b id is an example value. Your value may be different.
Check the list of all admin users if you are not sure which id should be used.

Example Response

STATUS: 204 OK

Get a collection of stores

To retrieve a paginated list of stores, you need to call the /api/store endpoint with the GET method.

Definition

GET /api/store

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

	active

	query

	(optional) Filter by activity

	name

	query

	(optional) Filter by name

To see the first page of all campaigns, use the method below:

Example

curl http://localhost:8181/api/store \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

Create a new store

To create a new store, you need to call the /api/store endpoint with the POST method.

Definition

POST /api/store

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	store[code]

	query

	Store code

	store[name]

	query

	Store name

	store[currency]

	query

	Store currency

	store[active]

	query

	Store activity, possible values: active/inactive

To create a new store, use the method below:

Example

curl http://localhost:8181/api/store \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "store[active] = 1" \
 -d "store[name] = store_name" \
 -d "store[currency] = EUR" \
 -d "store[code] = store_code"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

Transactions

These endpoints will allow you to easily manage transactions.

Import transactions

To import an XML file with transactions, you need to call the /api/<storeCode>/admin/transaction/import endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/transaction/import

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to import transactions into.

	file[file]

	query

	XML file with transactions

Example

curl http://localhost:8181/api/DEFAULT/admin/transaction/import \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "file[file]=C:\\fakepath\\transaction.xml"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "items": [
 {
 "status": "error",
 "message": "Convert exception: Value \"00000000-0000-474c-1111-b0dd880c07e\" is not a valid UUID.",
 "identifier": "0001_pos2_zzleID"
 },
 {
 "status": "success",
 "processImportResult": {
 "object": {
 "transactionId": "98b15ef5-94ad-43ef-9984-0d41197d14e6"
 }
 },
 "identifier": "id_bez_tymrazem"
 }
],
 "totalProcessed": 2,
 "totalSuccess": 1,
 "totalFailed": 1
}

Match transactions with the customers by importing a XML file

In order to match many transactions to many customers using an XML file, you need to call the api/<storeCode>/admin/transaction/customer/assign/import endpoint with the POST method.

Definition

POST api/<storeCode>/admin/transaction/customer/assign/import

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to match transactions in.

	file[file]

	query

	XML file with transactions

Example

curl http://localhost:8181/api/DEFAULT/admin/transaction/customer/assign/import \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "file[file]=C:\\fakepath\\match-customer.xml"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example XML

Note

Only one customer* field is required (customerId, customerEmail, customerPhoneNumber, customerLoyaltyCardNumber).

Example Response

STATUS: 200 OK

{
 "items": [
 {
 "status": "error",
 "message": "(match_customer-2019-11-08_1005-5dc52fe92bc59.xml) Processing exception: Customer is already assigned to this transaction",
 "identifier": "123"
 }
],
 "totalProcessed": 1,
 "totalSuccess": 0,
 "totalFailed": 1
}

Assign a customer to a specific transaction (admin)

To assign a customer to a specific transaction, you need to call the /api/<storeCode>/admin/transaction/customer/assign endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/transaction/customer/assign

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer and the transaction belong to.

	assign[transactionDocumentNumber]

	query

	Transaction Document Number

	assign[customerId]

	query

	Customer ID

	assign[customerLoyaltyCardNumber]

	query

	Customer Loyalty Number

	assign[customerPhoneNumber]

	query

	Customer Phone Number

Example

curl http://localhost:8181/api/DEFAULT/admin/transaction/customer/assign \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "assign[transactionDocumentNumber]=888" \
 -d "assign[customerId]=57524216-c059-405a-b951-3ab5c49bae14" \
 -d "assign[customerLoyaltyCardNumber]=333" \
 -d "assign[customerPhoneNumber]=333333"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "transactionId": "00000000-0000-1111-0000-000000000002"
}

Example Error Response

STATUS: 400 Bad Request

{
 "form": {
 "children": {
 "transactionDocumentNumber": {
 "errors": [
 "Customer is already assigned to this transaction"
]
 },
 "customerId": {},
 "customerLoyaltyCardNumber": {},
 "customerPhoneNumber": {}
 }
 },
 "errors": []
}

Assign a customer to a specific transaction (customer)

To assign a logged-in customer to a specific transaction, you need to call the /api/<storeCode>/customer/transaction/customer/assign endpoint with the POST method.

Definition

POST /api/<storeCode>/customer/transaction/customer/assign

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer and the transaction belong to.

	assign[transactionDocumentNumber]

	query

	Transaction Document Number

	assign[customerId]

	query

	Customer ID

	assign[customerLoyaltyCardNumber]

	query

	Customer Loyalty Number

	assign[customerPhoneNumber]

	query

	Customer Phone Number

Note

If you are using the auto-generated docs, you may see there are other fields in the assign[] object.
They are ignored in this endpoint. Do not use them in your application as they will be removed in a future version.

Example

curl http://localhost:8181/api/DEFAULT/customer/transaction/customer/assign \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."
 -d "assign[transactionDocumentNumber]=888"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "transactionId": "9f805211-9326-4b47-b5a6-8155d6ae9d2c"
}

Assign a customer to specific transaction (seller)

To assign a customer to a specific transaction, you need to call the /api/<storeCode>/pos/transaction/customer/assign endpoint with the POST method.

Definition

POST /api/<storeCode>/pos/transaction/customer/assign

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer and the transaction belong to.

	assign[transactionDocumentNumber]

	query

	Transaction Document Number

	assign[customerId]

	query

	Customer ID

	assign[customerLoyaltyCardNumber]

	query

	Customer Loyalty Number

	assign[customerPhoneNumber]

	query

	Customer Phone Number

Example

curl http://localhost:8181/api/DEFAULT/pos/transaction/customer/assign \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."
 -d "assign[transactionDocumentNumber]=123" \
 -d "assign[customerId]=57524216-c059-405a-b951-3ab5c49bae14" \
 -d "assign[customerLoyaltyCardNumber]=333" \
 -d "assign[customerPhoneNumber]=333333"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "transactionId": "00000000-0000-1111-0000-000000000005"
}

Get a list of transactions (customer)

To retrieve a complete or filtered list of all transactions a customer has access to, you need to call the /api/<storeCode>/customer/transaction endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/transaction

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	documentType

	query

	(optional) Document Type

	customerId

	query

	(optional) Customer ID

	documentNumber

	query

	(optional) Document Number

	posId

	query

	(optional) POS ID

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Note

If you are using the auto-generated docs, you may see there are other params, named customerData_*.
They are not used in this endpoint. Do not use them in your application as they will be removed in a future version.

Example

curl http://localhost:8181/api/DEFAULT/customer/transaction \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Attention

Pagination limitation, we can only show 10,000 results. 10,000 is a limit and can be found in the .env file.

Example Response

STATUS: 200 OK

{
 "transactions": [
 {
 "grossValue": 3,
 "transactionId": "00000000-0000-1111-0000-000000000003",
 "documentNumber": "456",
 "purchaseDate": "2018-02-20T09:45:04+0100",
 "purchasePlace": "wroclaw",
 "documentType": "sell",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "assignedToCustomerDate": "1970-01-01T01:00:00+01:00",
 "customerData": {
 "email": "user@example.com",
 "name": "Jan Nowak",
 "nip": "aaa",
 "phone": "123",
 "loyaltyCardNumber": "sa2222",
 "address": {
 "street": "Bagno",
 "address1": "12",
 "province": "Mazowieckie",
 "city": "Warszawa",
 "postal": "00-800",
 "country": "PL"
 }
 },
 "labels": [
 {
 "key": "scan_id",
 "value": "123"
 }
],
 "items": [
 {
 "sku": {
 "code": "SKU1"
 },
 "name": "item 1",
 "quantity": 1,
 "grossValue": 1,
 "category": "aaa",
 "maker": "sss",
 "labels": [
 {
 "key": "test",
 "value": "label"
 },
 {
 "key": "test",
 "value": "label2"
 }
]
 },
 {
 "sku": {
 "code": "SKU2"
 },
 "name": "item 2",
 "quantity": 2,
 "grossValue": 2,
 "category": "bbb",
 "maker": "ccc",
 "labels": []
 }
],
 "currency": "eur",
 "pointsEarned": 6.9
 },
 {
 "grossValue": 3,
 "transactionId": "00000000-0000-1111-0000-000000000005",
 "documentNumber": "888",
 "purchaseDate": "2018-02-20T09:45:04+0100",
 "purchasePlace": "wroclaw",
 "documentType": "sell",
 "customerId": "57524216-c059-405a-b951-3ab5c49bae14",
 "assignedToCustomerDate": "1970-01-01T01:00:00+01:00",
 "customerData": {
 "email": "o@lo.com",
 "name": "Jan Nowak",
 "nip": "aaa",
 "phone": "123",
 "loyaltyCardNumber": "sa21as222",
 "address": {
 "street": "Bagno",
 "address1": "12",
 "province": "Mazowieckie",
 "city": "Warszawa",
 "postal": "00-800",
 "country": "PL"
 }
 },
 "labels": [
 {
 "key": "scan_id",
 "value": "343"
 }
],
 "items": [
 {
 "sku": {
 "code": "SKU1"
 },
 "name": "item 1",
 "quantity": 1,
 "grossValue": 1,
 "category": "aaa",
 "maker": "sss",
 "labels": [
 {
 "key": "test",
 "value": "label"
 },
 {
 "key": "test",
 "value": "label2"
 }
]
 },
 {
 "sku": {
 "code": "SKU2"
 },
 "name": "item 2",
 "quantity": 2,
 "grossValue": 2,
 "category": "bbb",
 "maker": "ccc",
 "labels": []
 }
],
 "currency": "eur",
 "pointsEarned": 6
 }
],
 "total": 2
}

Get transaction details (customer)

To retrieve transaction details, you need to call the /api/<storeCode>/customer/transaction/<transaction> endpoint with the GET method.

Definition

GET /api/<storeCode>/customer/transaction/<transaction>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the transaction belongs to.

	<transaction>

	query

	Transaction ID

Example

curl http://localhost:8181/api/DEFAULT/customer/transaction/00000000-0000-1111-0000-000000000003 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "grossValue": 3,
 "transactionId": "00000000-0000-1111-0000-000000000003",
 "documentNumber": "456",
 "purchaseDate": "2018-02-20T09:45:04+0100",
 "purchasePlace": "wroclaw",
 "documentType": "sell",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "assignedToCustomerDate": "1970-01-01T01:00:00+01:00",
 "customerData": {
 "email": "user@example.com",
 "name": "Jan Nowak",
 "nip": "aaa",
 "phone": "123",
 "loyaltyCardNumber": "sa2222",
 "address": {
 "street": "Bagno",
 "address1": "12",
 "province": "Mazowieckie",
 "city": "Warszawa",
 "postal": "00-800",
 "country": "PL"
 }
 },
 "labels": [
 {
 "key": "scan_id",
 "value": "123"
 }
],
 "items": [
 {
 "sku": {
 "code": "SKU1"
 },
 "name": "item 1",
 "quantity": 1,
 "grossValue": 1,
 "category": "aaa",
 "maker": "sss",
 "labels": [
 {
 "key": "test",
 "value": "label"
 },
 {
 "key": "test",
 "value": "label2"
 }
]
 },
 {
 "sku": {
 "code": "SKU2"
 },
 "name": "item 2",
 "quantity": 2,
 "grossValue": 2,
 "category": "bbb",
 "maker": "ccc",
 "labels": []
 }
],
 "currency": "eur",
 "pointsEarned": 6.9
}

Get customer’s transactions (seller)

To retrieve a list of customer transactions, you need to call the /api/<storeCode>/seller/transaction/customer/<customer> endpoint with the GET method.

Definition

GET /api/<storeCode>/seller/transaction/customer/<customer>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	<customer>

	query

	Customer ID

	documentNumber

	query

	(optional) Filter by Document Number

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/seller/transaction/customer/4b32a723-9923-46fc-a2bc-d09767e5e59b \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Attention

Pagination limitation, we can only show 10,000 results. 10,000 is a limit and can be found in the .env file.

Example Response

STATUS: 200 OK

{
 "transactions": [
 {
 "grossValue": 2200,
 "transactionId": "c13e4e89-2e9a-482d-8ab0-41a8eb9927ed",
 "documentNumber": "214124124130",
 "purchaseDate": "2017-08-23T00:00:00+0200",
 "documentType": "return",
 "customerId": "4b32a723-9923-46fc-a2bc-d09767e5e59b",
 "assignedToCustomerDate": "1970-01-01T01:00:00+01:00",
 "customerData": {
 "email": "tomasztest8@wp.pl",
 "name": "Firstname+Lastname",
 "nip": "00000000000000",
 "phone": "00000000000000",
 "loyaltyCardNumber": "11111111111",
 "address": {
 "street": "Street+name",
 "address1": "123",
 "province": "Dolnoslaskie",
 "city": "Wroclaw",
 "postal": "00-000",
 "country": "PL"
 }
 },
 "labels": [
 {
 "key": "scan_id",
 "value": "333"
 }
],
 "items": [
 {
 "sku": {
 "code": "test0101"
 },
 "name": "Product+name",
 "quantity": 1,
 "grossValue": 2200,
 "category": "Category+Name",
 "maker": "Marker+name",
 "labels": [
 {
 "key": "Label+key",
 "value": "Label+value"
 }
]
 }
],
 "excludedLevelCategories": [
 "category_excluded_from_level"
],
 "currency": "eur"
 }
],
 "total": 1
}

Get transactions with provided document number (seller)

To retrieve a list of transactions with provided document number, you need to call the /api/<storeCode>/seller/transaction/<documentNumber> endpoint with the GET method.

Definition

GET /api/<storeCode>/seller/transaction/<documentNumber>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the transaction belongs to.

	<documentNumber>

	query

	Document Number ID

Example

curl http://localhost:8181/api/DEFAULT/seller/transaction/214124124125 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

This endpoint uses documentNumber, your internal identifier of a transaction.
This is not the same as transactionId and should be easier to find for the merchant.

Example Response

STATUS: 200 OK

{
 "transactions": [
 {
 "grossValue": 1500,
 "transactionId": "d5b1119a-698b-40b4-9ac4-8ef704fa4433",
 "documentNumber": "214124124125",
 "purchaseDate": "2017-08-22T00:00:00+0200",
 "documentType": "sell",
 "customerId": "4b32a723-9923-46fc-a2bc-d09767e5e59b",
 "assignedToCustomerDate": "1970-01-01T01:00:00+01:00",
 "customerData": {
 "email": "tomasztest8@wp.pl",
 "name": "Firstname+Lastname",
 "nip": "00000000000000",
 "phone": "00000000000000",
 "loyaltyCardNumber": "11111111111",
 "address": {
 "street": "Street+name",
 "address1": "123",
 "province": "Dolnoslaskie",
 "city": "Wroclaw",
 "postal": "00-000",
 "country": "PL"
 }
 },
 "labels": [
 {
 "key": "scan_id",
 "value": "123"
 }
],
 "items": [
 {
 "sku": {
 "code": "test0101"
 },
 "name": "Product+name",
 "quantity": 1,
 "grossValue": 1500,
 "category": "Category+Name",
 "maker": "Marker+name",
 "labels": [
 {
 "key": "Label+key",
 "value": "Label+value"
 }
]
 }
],
 "excludedLevelCategories": [
 "category_excluded_from_level"
],
 "currency": "eur"
 }
],
 "total": 1
}

Get a list of transactions

To retrieve a complete or filtered list of transactions, you need to call the /api/<storeCode>/transaction endpoint with the GET method.

Definition

GET /api/<storeCode>/transaction

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get transactions from.

	customerData_loyaltyCardNumber

	query

	(optional) Loyalty Card Number

	customerData_name

	query

	(optional) Customer Name

	customerData_email

	query

	(optional) Customer Email

	customerData_phone

	query

	(optional) Customer Phone

	customerId

	query

	(optional) Customer ID

	documentType

	query

	(optional) Document Type

	documentNumber

	query

	(optional) Document Number

	posId

	query

	(optional) POS ID

	purchaseDateFrom

	query

	(optional) purchase date’s lower limit

	purchaseDateTo

	query

	(optional) purchase date’s upper limit

	grossValueFrom

	query

	(optional) transaction gross value lower limit

	grossValueTo

	query

	(optional) transaction gross value upper limit

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

	labels

	query

	(optional) Filter transactions by labels.
Format “labels[0][key]=label_key
& labels[0][value]=first_value
& labels[1][key]=another_key”

Example

curl http://localhost:8181/api/DEFAULT/transaction \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Attention

Pagination limitation, we can only show 10,000 results. 10,000 is a limit and can be found in the .env file.

Example Response

STATUS: 200 OK

{
 "transactions": [
 {
 "grossValue": 3,
 "transactionId": "00000000-0000-1111-0000-000000000003",
 "documentNumber": "456",
 "purchaseDate": "2018-02-20T09:45:04+0100",
 "purchasePlace": "wroclaw",
 "documentType": "sell",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "assignedToCustomerDate": "1970-01-01T01:00:00+01:00",
 "customerData": {
 "email": "user@example.com",
 "name": "Jan Nowak",
 "nip": "aaa",
 "phone": "123",
 "loyaltyCardNumber": "sa2222",
 "address": {
 "street": "Bagno",
 "address1": "12",
 "province": "Mazowieckie",
 "city": "Warszawa",
 "postal": "00-800",
 "country": "PL"
 }
 },
 "labels": [
 {
 "key": "scan_id",
 "value": "123"
 }
],
 "items": [
 {
 "sku": {
 "code": "SKU1"
 },
 "name": "item 1",
 "quantity": 1,
 "grossValue": 1,
 "category": "aaa",
 "maker": "sss",
 "labels": [
 {
 "key": "test",
 "value": "label"
 },
 {
 "key": "test",
 "value": "label2"
 }
]
 },
 {
 "sku": {
 "code": "SKU2"
 },
 "name": "item 2",
 "quantity": 2,
 "grossValue": 2,
 "category": "bbb",
 "maker": "ccc",
 "labels": []
 }
],
 "currency": "eur",
 "pointsEarned": 6.9
 },
 {
 "grossValue": 3,
 "transactionId": "00000000-0000-1111-0000-000000000005",
 "documentNumber": "888",
 "purchaseDate": "2018-02-20T09:45:04+0100",
 "purchasePlace": "wroclaw",
 "documentType": "sell",
 "customerId": "57524216-c059-405a-b951-3ab5c49bae14",
 "customerData": {
 "email": "o@lo.com",
 "name": "Jan Nowak",
 "nip": "aaa",
 "phone": "123",
 "loyaltyCardNumber": "sa21as222",
 "address": {
 "street": "Bagno",
 "address1": "12",
 "province": "Mazowieckie",
 "city": "Warszawa",
 "postal": "00-800",
 "country": "PL"
 }
 },
 "labels": [
 {
 "key": "scan_id",
 "value": "234"
 }
],
 "items": [
 {
 "sku": {
 "code": "SKU1"
 },
 "name": "item 1",
 "quantity": 1,
 "grossValue": 1,
 "category": "aaa",
 "maker": "sss",
 "labels": [
 {
 "key": "test",
 "value": "label"
 },
 {
 "key": "test",
 "value": "label2"
 }
]
 },
 {
 "sku": {
 "code": "SKU2"
 },
 "name": "item 2",
 "quantity": 2,
 "grossValue": 2,
 "category": "bbb",
 "maker": "ccc",
 "labels": []
 }
],
 "currency": "eur",
 "pointsEarned": 6
 }
],
 "total": 2
}

Register a new transaction

To register a new transaction, you need to call the /api/<storeCode>/transaction endpoint with the POST method.

Definition

POST /api/<storeCode>/transaction

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to add transaction to.

	transaction[transactionData][documentType]

	query

	Document type for Transaction Data, 2 possible
values: return, sell

	transaction[transactionData][documentNumber]

	query

	Document number

	transaction[revisedDocument]

	query

	Sales document number

	transaction[transactionData][purchaseDate]

	query

	(optional) Purchase date

	transaction[items][][sku][code]

	query

	SKU Code

	transaction[items][][name]

	query

	Product name

	transaction[items][][quantity]

	query

	Quantity

	transaction[items][][grossValue]

	query

	Gross value

	transaction[items][][category]

	query

	Category Name

	transaction[items][][maker]

	query

	Brand name

	transaction[items][][labels][][key]

	query

	Label key

	transaction[items][][labels][][value]

	query

	Label value

	transaction[customerData][name]

	query

	Customer name

	transaction[customerData][email]

	query

	(optional) Customer email

	transaction[customerData][phone]

	query

	(optional) Customer phone

	transaction[customerData][loyaltyCardNumber]

	query

	(optional) Customer Loyalty card number

	transaction[customerData][nip]

	query

	(optional) Customer NIP

	transaction[customerData][address][street]

	query

	(optional) Street

	transaction[customerData][address][address1]

	query

	(optional) Customer address1

	transaction[customerData][address][postal]

	query

	(optional) Postal code

	transaction[customerData][address][city]

	query

	(optional) City

	transaction[customerData][address][province]

	query

	(optional) Province

	transaction[customerData][address][country]

	query

	(optional) Country

	transaction[labels][0][key]

	query

	(optional) First label key

	transaction[labels][0][value]

	query

	(optional) First label value

	transaction[labels][1][key]

	query

	(optional) Second label key

	transaction[labels][1][value]

	query

	(optional) Second label value

Note

You need to provide one of the following:
transaction[customerData][email],
transaction[customerData][phone],
transaction[customerData][loyaltyCardNumber],
to match a customer with a transaction.

Example

curl http://localhost:8181/api/DEFAULT/transaction \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "transaction[items][0][sku][code]=test0101" \
 -d "transaction[items][0][name]=Product+name" \
 -d "transaction[items][0][quantity]=1" \
 -d "transaction[items][0][grossValue]=1500.00" \
 -d "transaction[items][0][category]=Category+Name" \
 -d "transaction[items][0][maker]=Marker+name" \
 -d "transaction[items][0][labels][0][key]=Label+key" \
 -d "transaction[items][0][labels][0][value]=Label+value" \
 -d "transaction[customerData][name]=Firstname+Lastname" \
 -d "transaction[customerData][email]=tomasztest8@wp.pl" \
 -d "transaction[customerData][phone]=00000000000000" \
 -d "transaction[customerData][loyaltyCardNumber]=11111111111" \
 -d "transaction[customerData][nip]=00000000000000" \
 -d "transaction[customerData][address][street]=Street+name" \
 -d "transaction[customerData][address][address1]=123" \
 -d "transaction[customerData][address][postal]=00-000" \
 -d "transaction[customerData][address][city]=Wroclaw" \
 -d "transaction[customerData][address][province]=Dolnoslaskie" \
 -d "transaction[customerData][address][country]=PL" \
 -d "transaction[transactionData][documentNumber]=214124124125" \
 -d "transaction[transactionData][purchaseDate]=2019-02-20 09:28" \
 -d "transaction[transactionData][documentType]=sell"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "transactionId": "d5b1119a-698b-40b4-9ac4-8ef704fa4433"
}

Update transaction labels

To update transaction labels, you need to log in as admin and call the /api/<storeCode>/admin/transaction/labels endpoint with the POST method.

Definition

POST /api/<storeCode>/admin/transaction/labels

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the transaction belongs to.

	transaction_labels[transactionId]

	query

	Transaction ID

	transaction_labels[labels][0][key]

	query

	(optional) First label key

	transaction_labels[labels][0][value]

	query

	(optional) First label value

	transaction_labels[labels][1][key]

	query

	(optional) Second label key

	transaction_labels[labels][1][value]

	query

	(optional) Second label value

Example

curl http://localhost:8181/api/DEFAULT/admin/transaction/labels \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "transaction_labels[transactionId]=00000000-0000-1111-0000-000000000000" \
 -d "transaction_labels[label][0][key]=some label" \
 -d "transaction_labels[label][0][value]=some value"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "transactionId": "d5b1119a-698b-40b4-9ac4-8ef704fa4433"
}

Add new transaction labels as admin

To update transaction labels, you need to log in as an admin with write privileges and call the /api/<storeCode>/admin/transaction/labels endpoint with the PATCH method.

Definition

PATCH /api/<storeCode>/admin/transaction/labels

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	append[transactionDocumentNumber]

	query

	Transaction document number

	append[labels][0][key]

	query

	(optional) First label key

	append[labels][0][value]

	query

	(optional) First label value

	append[labels][1][key]

	query

	(optional) Second label key

	append[labels][1][value]

	query

	(optional) Second label value

Example

curl http://localhost:8181/api/DEFAULT/admin/transaction/labels \
 -X "PATCH" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "append[transactionDocumentNumber]=123" \
 -d "append[labels][0][key]=some label" \
 -d "append[labels][0][value]=some value"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "transactionId": "d5b1119a-698b-40b4-9ac4-8ef704fa4433"
}

Add new transaction labels as customer

To update transaction labels, you need to log in as a customer and call the /api/<storeCode>/customer/transaction/labels endpoint with the PATCH method.
A customer can only add new labels to transactions which are assigned to them.

Definition

PATCH /api/<storeCode>/customer/transaction/labels

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the customer belongs to.

	append[transactionDocumentNumber]

	query

	Transaction document number

	append[labels][0][key]

	query

	(optional) First label key

	append[labels][0][value]

	query

	(optional) First label value

	append[labels][1][key]

	query

	(optional) Second label key

	append[labels][1][value]

	query

	(optional) Second label value

Example

curl http://localhost:8181/api/DEFAULT/customer/transaction/labels \
 -X "PATCH" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "append[transactionDocumentNumber]=123" \
 -d "append[labels][0][key]=some label" \
 -d "append[labels][0][value]=some value"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "transactionId": "d5b1119a-698b-40b4-9ac4-8ef704fa4433"
}

Add label to Transaction

To add label to a Transaction, you need to call the /api/{storeCode}/transaction/{transactionId}/label` endpoint with the ``PUT method.

Definition

PUT /api/{storeCode}/transaction/{transactionId}/label

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the updated Transaction
belongs to.

	<transactionId>

	query

	Transaction ID

	labels[][key]

	query

	label key

	labels[][value]

	query

	label value

Example

curl -X POST \
 http://localhost:8181/DEFAULT/transaction/28f79fe5-00af-41f6-9200-e59e86b0c67f/label \
 -H 'accept: application/json' \
 -H 'content-type: application/json' \
 -d '{
 "labels": [
 {"key": "keyA", "value": "valueA"},
 {"key": "keyB", "value": "valueB"}
]
 }'

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 OK

Remove label from a Transaction

To remove label from a Transaction, you need to call the /api/{storeCode}/transaction/{transactionId}/label endpoint with the DELETE method.

Definition

DELETE /api/{storeCode}/transaction/{transactionId}/label

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the updated Transaction
belongs to.

	<transactionId>

	query

	Transaction ID

	labels[][key]

	query

	label key

	labels[][value]

	query

	label value

Example

curl -X DELETE \
 http://localhost:8181/DEFAULT/transaction/28f79fe5-00af-41f6-9200-e59e86b0c67f/label \
 -H 'accept: application/json' \
 -H 'content-type: application/json' \
 -d '{
 "labels": [
 {"key": "keyA", "value": "valueA"},
 {"key": "keyB", "value": "valueB"}
]
 }'

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

Get available item labels

To retrieve available labels, you need to call the /api/<storeCode>/transaction/item/labels endpoint with the GET method.

Definition

GET /api/<storeCode>/transaction/item/labels

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get available labels of.

Example

curl http://localhost:8181/api/DEFAULT/transaction/item/labels \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The label and label2 are example values. You can name labels as you wish.

Example Response

STATUS: 200 OK

{
 "labels": {
 "test": [
 "label",
 "label2"
]
 }
}

Number of points which can be obtained after registering given transaction

To retrieve the number of points which can be obtained after registering a given transaction, you need to call the /api/<storeCode>/transaction/simulate endpoint with the POST method.

Definition

POST /api/<storeCode>/transaction/simulate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to simulate transaction in.

	transaction[items][][sku][code]

	query

	SKU code

	transaction[items][][name]

	query

	Product name

	transaction[items][][quantity]

	query

	Quantity

	transaction[items][][grossValue]

	query

	Gross value

	transaction[items][][category]

	query

	Category name

	transaction[items][][maker]

	query

	Brand name

	transaction[items][][labels][][key]

	query

	Label key

	transaction[items][][labels][][value]

	query

	Label value

	transaction[purchaseDate]

	query

	Purchase date

	transaction[customerData][name]

	query

	Customer name

	transaction[customerData][email]

	query

	(optional, see below) Customer email

	transaction[customerData][phone]

	query

	(optional, see below) Customer phone

	transaction[customerData][loyaltyCardNumber]

	query

	(optional, see below) Loyalty card number

	transaction[customerData][nip]

	query

	(optional) Customer NIP

	transaction[customerData][address][street]

	query

	(optional) Street

	transaction[customerData][address][address1]

	query

	(optional) Customer address1

	transaction[customerData][address][postal]

	query

	(optional) Postal code

	transaction[customerData][address][city]

	query

	(optional) City

	transaction[customerData][address][province]

	query

	(optional) Province

	transaction[customerData][address][country]

	query

	(optional) Country

Heads up! One of the following: email, phone, loyaltyCardNumber is required, along with the name, in order to find the user for the simulation to be performed.

Example

curl http://localhost:8181/api/DEFAULT/transaction/simulate \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "transaction[items][0][sku][code]=SKU1" \
 -d "transaction[items][0][name]=item+8" \
 -d "transaction[items][0][quantity]=1" \
 -d "transaction[items][0][grossValue]=1" \
 -d "transaction[items][0][category]=aaa" \
 -d "transaction[items][0][maker]=sss" \
 -d "transaction[items][0][labels][0]=labels" \
 -d "transaction[items][0][labels][0][key]=test" \
 -d "transaction[items][0][labels][0][value]=label" \
 -d "transaction[purchaseDate]=2022-02-20T09:45:04+0100"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "points": 2.3
}

Get transaction details (admin)

To get transaction details, you need to call the /api/<storeCode>/transaction/<transaction> endpoint with the GET method.

Definition

GET /api/<storeCode>/transaction/<transaction>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the transaction belongs to.

	<transaction>

	query

	Transaction ID

Example

To see details of a transaction with ID 00000000-0000-1111-0000-000000000005, use the below method:

curl http://localhost:8181/api/DEFAULT/transaction/00000000-0000-1111-0000-000000000005 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "grossValue": 3,
 "transactionId": "00000000-0000-1111-0000-000000000005",
 "documentNumber": "888",
 "purchaseDate": "2018-02-20T09:45:04+0100",
 "purchasePlace": "wroclaw",
 "documentType": "sell",
 "customerId": "57524216-c059-405a-b951-3ab5c49bae14",
 "assignedToCustomerDate": "1970-01-01T01:00:00+01:00",
 "customerData": {
 "email": "o@lo.com",
 "name": "Jan Nowak",
 "nip": "aaa",
 "phone": "123",
 "loyaltyCardNumber": "sa21as222",
 "address": {
 "street": "Bagno",
 "address1": "12",
 "province": "Mazowieckie",
 "city": "Warszawa",
 "postal": "00-800",
 "country": "PL"
 }
 },
 "labels": [
 {
 "key": "scan_id",
 "value": "123"
 }
],
 "items": [
 {
 "sku": {
 "code": "SKU1"
 },
 "name": "item 1",
 "quantity": 1,
 "grossValue": 1,
 "category": "aaa",
 "maker": "sss",
 "labels": [
 {
 "key": "test",
 "value": "label"
 },
 {
 "key": "test",
 "value": "label2"
 }
]
 },
 {
 "sku": {
 "code": "SKU2"
 },
 "name": "item 2",
 "quantity": 2,
 "grossValue": 2,
 "category": "bbb",
 "maker": "ccc",
 "labels": []
 }
],
 "currency": "eur",
 "pointsEarned": 6
}

ACL API

These endpoints will allow you to easily manage ACL for the administrator.

Creating a role

To create a new role, you need to call the /api/admin/acl/role endpoint with the POST method.

Definition

POST /api/admin/acl/role

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	role[name]

	request

	Name

	role[default] | request

	Mark as default role

	role[permissions][][resource]

	request

	Permission resource

	role[permissions][][access]

	request

	Permission access type (MODIFY, VIEW)

Example

To create a new role, use the method below:

curl http://localhost:8181/api/admin/acl/role \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "role[name]=Super admin" \
 -d "role[default]=true" \
 -d "role[permissions][0][resource]=LEVEL" \
 -d "role[permissions][0][access]=MODIFY" \
 -d "role[permissions][1][resource]=EARNING_RULE" \
 -d "role[permissions][1][access]=MODIFY"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

Getting a single role

To retrieve the details of a role, you need to call the /api/admin/acl/role/{role} endpoint with the GET method.

Definition

GET /api/admin/acl/role/<role>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<role>

	query

	Id of the role

Example

To see the details of the admin user with role = 37, use the method below:

curl http://localhost:8181/api/admin/acl/role/37
 -X "GET" -H "Accept: application/json"
 -H "Content-type: application/x-www-form-urlencoded"
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "id": 37,
 "name": "Reporter admin",
 "role": "ROLE_ADMIN",
 "master": false,
 "default": false,
 "permissions": [
 {
 "id": 57,
 "resource": "EARNING_RULE",
 "access": "VIEW"
 },
 {
 "id": 56,
 "resource": "SEGMENT_EXPORT",
 "access": "VIEW"
 },
 {
 "id": 55,
 "resource": "LEVEL",
 "access": "VIEW"
 }
]
}

Note

The 37 id is an example value. Your value may be different.

Collection of available roles

To retrieve a list of roles, you need to call the /api/admin/acl/role endpoint with the GET method.

Definition

GET /api/admin/acl/role

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

To see the list of available roles, use the method below:

Example

curl http://localhost:8181/api/admin/acl/role \
 -X "GET" -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "roles": [
 {
 "id": 37,
 "name": "Super admin",
 "role": "ROLE_ADMIN",
 "master": true,
 "default": true,
 "permissions": []
 },
 {
 "id": 38,
 "name": "Reporter admin",
 "role": "ROLE_ADMIN",
 "master": false,
 "default": false,
 "permissions": [
 {
 "id": 57,
 "resource": "EARNING_RULE",
 "access": "VIEW"
 },
 {
 "id": 56,
 "resource": "SEGMENT_EXPORT",
 "access": "VIEW"
 },
 {
 "id": 55,
 "resource": "LEVEL",
 "access": "VIEW"
 }
]
 }
],
 "total": 2
}

Updating a role

To update a role, you need to call the /api/admin/acl/role/<role> endpoint with the PUT method.

Definition

PUT /api/admin/acl/role/<role>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	role[name]

	request

	Name

	role[default]

	request

	Mark as default role

	role[permissions][][resource]

	request

	Permission resource

	role[permissions][][access]

	request

	Permission access type (MODIFY, VIEW)

Example

To update the role with id = 37, use the method below:

curl http://localhost:8181/api/admin/acl/role/37 \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -X "PUT" \
 -d "role[name]=Super admin" \
 -d "role[default]=true" \
 -d "role[permissions][0][resource]=LEVEL" \
 -d "role[permissions][0][access]=MODIFY" \
 -d "role[permissions][1][resource]=EARNING_RULE" \
 -d "role[permissions][1][access]=MODIFY" \

Example Response

STATUS: 204 No Content

Collection of available resources

To retrieve a list of available resources, you need to call the /api/admin/acl/resources endpoint with the GET method.

Definition

GET /api/admin/acl/resources

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

To see the list of available resources, use the method below:

Example

curl http://localhost:8181/api/admin/acl/resources \
 -X "GET" -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "resources": [
 {
 "code": "SEGMENT_EXPORT",
 "name": "Utilities"
 },
 {
 "code": "EARNING_RULE",
 "name": "Earning rules"
 },
 {
 "code": "LEVEL",
 "name": "Levels"
 }
],
 "total": 3
}

Collection of available access types

To retrieve a list of available access types, you need to call the /api/admin/acl/accesses endpoint with the GET method.

Definition

GET /api/admin/acl/accesses

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

To see the list of available access types, use the method below:

Example

curl http://localhost:8181/api/admin/acl/accesses \
 -X "GET" -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "accesses": [
 {
 "code": "VIEW",
 "name": "View"
 },
 {
 "code": "MODIFY",
 "name": "Modify"
 }
],
 "total": 2
}

Deleting a single role

To delete specific role, you need to call the /api/admin/acl/role/{role} endpoint with the DELETE method.

Definition

DELETE /api/admin/acl/role/{role}

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<role>

	query

	Id of the role

Example

curl http://localhost:8181/api/admin/acl/role/37
 -X "DELETE" -H "Accept: application/json"
 -H "Content-type: application/x-www-form-urlencoded"
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

204 No Content

Note

The 37 id is an example value. Your value can be different.

Event API

These endpoints will allow you to retrieve events from Event Store.

Get the list of events

To retrieve a paginated list of events, you need to call the /api/event endpoint with the GET method.

Definition

GET /api/event

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	fromId

	query

	(optional) Start from event ID, by default from the beginning.

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/event \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

Endpoint will return the first 100 items from the given <eventId>.

Example Response

STATUS: 200 OK

{
 "events": [
 {
 "id": 1,
 "uuid": "e5fbe6a2-18f6-4569-8c5c-8f87c7717d87",
 "payload": {
 "accountId": {
 "accountId": "e5fbe6a2-18f6-4569-8c5c-8f87c7717d87"
 },
 "pointsTransfer": {
 "id": {
 "pointsTransferId": "e82c96cf-32a3-43bd-9034-4df343e5f333"
 },
 "comment": "Example comment",
 "createdAt": "2020-10-15T12:06:38+02:00",
 "value": 100,
 "canceled": false,
 "issuer": "system"
 }
 },
 "type": "OpenLoyalty.Domain.Account.Event.PointsWereSpent",
 "recorderOn": "2020-10-15T10:06:38+00:00"
 }
],
 "total": 1
}

Get event details

To retrieve the details of a event, you need to call the /api/event/<eventId> endpoint with the GET method.

Definition

GET /api/event/<eventId>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<eventId>

	query

	Event ID

Example

To see the details of the event with id eventId = 212333, use the method below:

curl http://localhost:8181/api/event/212333 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "id": 73,
 "uuid": "00000000-0000-474c-b092-b0dd880c07e2",
 "payload": {
 "customerId": {
 "customerId": "00000000-0000-474c-b092-b0dd880c07e2"
 },
 "levelId": {
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e51111"
 },
 "oldLevelId": {
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e50000"
 },
 "updateAt": "2020-10-15T12:06:23+02:00",
 "manually": false,
 "removeLevelManually": false
 },
 "type": "OpenLoyalty.Domain.User.Event.CustomerWasMovedToLevel",
 "recorderOn": "2020-10-15T10:06:23+00:00"
}

List of available events

OpenLoyalty.Domain.User.Event.AssignedAccountToCustomer
OpenLoyalty.Domain.User.Event.AssignedTransactionToCustomer
OpenLoyalty.Domain.User.Event.CampaignCouponWasChanged
OpenLoyalty.Domain.User.Event.CampaignStatusWasChanged
OpenLoyalty.Domain.User.Event.CampaignUsageWasChanged
OpenLoyalty.Domain.User.Event.CampaignWasBoughtByCustomer
OpenLoyalty.Domain.User.Event.CampaignWasReturned
OpenLoyalty.Domain.User.Event.CustomerAddressWasUpdated
OpenLoyalty.Domain.User.Event.CustomerAvatarWasRemoved
OpenLoyalty.Domain.User.Event.CustomerAvatarWasSet
OpenLoyalty.Domain.User.Event.CustomerCompanyDetailsWereUpdated
OpenLoyalty.Domain.User.Event.CustomerDetailsWereUpdated
OpenLoyalty.Domain.User.Event.CustomerInvitationTokenWasCreated
OpenLoyalty.Domain.User.Event.CustomerLevelWasRecalculated
OpenLoyalty.Domain.User.Event.CustomerLoyaltyCardNumberWasUpdated
OpenLoyalty.Domain.User.Event.CustomerWasActivated
OpenLoyalty.Domain.User.Event.CustomerWasAnonymized
OpenLoyalty.Domain.User.Event.CustomerWasAssignedToStore
OpenLoyalty.Domain.User.Event.CustomerWasAttachedToInvitation
OpenLoyalty.Domain.User.Event.CustomerWasDeactivated
OpenLoyalty.Domain.User.Event.CustomerWasDeleted
OpenLoyalty.Domain.User.Event.CustomerWasMovedToLevel
OpenLoyalty.Domain.User.Event.CustomerWasRegistered
OpenLoyalty.Domain.User.Event.InvitationWasCreated
OpenLoyalty.Domain.User.Event.PosWasAssignedToCustomer
OpenLoyalty.Domain.User.Event.SellerWasAssignedToCustomer
OpenLoyalty.Domain.Account.Event.AccountWasAssignedToStore
OpenLoyalty.Domain.Account.Event.AccountWasCreated
OpenLoyalty.Domain.Account.Event.PointsHasBeenReset
OpenLoyalty.Domain.Account.Event.PointsTransferHasBeenCanceled
OpenLoyalty.Domain.Account.Event.PointsTransferHasBeenExpired
OpenLoyalty.Domain.Account.Event.PointsTransferHasBeenUnlocked
OpenLoyalty.Domain.Account.Event.PointsWereAdded
OpenLoyalty.Domain.Account.Event.PointsWereBlocked
OpenLoyalty.Domain.Account.Event.PointsWereReturned
OpenLoyalty.Domain.Account.Event.PointsWereSpent
OpenLoyalty.Domain.Account.Event.PointsWereTransferred
OpenLoyalty.Domain.Campaign.Event.CampaignBoughtDeliveryStatusWasChanged
OpenLoyalty.Domain.Campaign.Event.CampaignBoughtCashbackStatusWasChanged
OpenLoyalty.Domain.Campaign.Event.CampaignUsageWasChanged
OpenLoyalty.Domain.Transaction.Event.TransactionWasRegistered
OpenLoyalty.Domain.Transaction.Event.CustomerWasAssignedToTransaction

The Developer’s Guide

The Developer’s Guide contains information for developers who want to know more about
Open Loyalty architecture and used concepts. This guide helps to understand how Open Loyalty works.

Introduction

	About Open Loyalty

	Used concepts

Installation

	Requirements

	Installation

	Upgrading

	Kubernetes

Architecture

	Overview

	Domain Driven Design

	CQRS

	Event Sourcing

	API

	Cockpits

	Fixtures

	Events

	Translations

Configuration

	/developer/configuration/channels

	/developer/configuration/locales

	/developer/configuration/currencies

Local environment

	Xebug with PHP Storm

	Unit & integration tests in PHPStorm

	Exploring Elasticsearch’s indices

	RabbitMQ Management

	Redis

	Varnish

Introduction

	About Open Loyalty

	Used concepts

Installation

	Requirements

	Installation

	Upgrading

	Kubernetes

Architecture

	Overview

	Domain Driven Design

	CQRS

	Event Sourcing

	API

	Cockpits

	Fixtures

	Events

	Translations

Configuration

	/developer/configuration/channels

	/developer/configuration/locales

	/developer/configuration/currencies

Environment setup

	Xebug with PHP Storm

	Unit & integration tests in PHPStorm

	Exploring Elasticsearch’s indices

	RabbitMQ Management

	Redis

	Varnish

The Cookbook

The Open Loyalty’s Cookbook is a collection of solution articles helping you with some specific, narrow problems.

Introduction

	How to create a new bundle

	How to add a new API endpoint

	Creating new Commands and Handlers

	How to backup elasticsearch

	How to change the domain

	How to change main language

	How to schedule transactions import

	How to work with queues

	How to add a new field to an entity

	How to add a new tab in the admin panel

	How to enable LDAP authorization

	How to create a translatable field

	Open Loyalty FAQ

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	account

 	account_activate

 	account_activation

 	account_anonymize

 	account_creation, [1]

 	account_deactivate

 	account_delete

 	account_remove

 	account_updating, [1]

 	acl

 	actions_controls

 	add_pos

 	admin_account

 	admin_sidebar

 	admin_sign_in

 	
 	admin_workspace

 	agreements

 	all_customers

 	all_levels

 	all_merchants

 	all_pos

 	all_rewards

 	all_rules

 	all_segments

 	all_transactions

 	all_transfers

 	anniversary

 	Authorization

 	available_rewards

 	average_transaction

B

 	
 	brands

 	
 	buy_reward

C

 	
 	campaign_categories

 	canceling_transfer

 	cashback, [1]

 	custom, [1]

 	custom_customer

 	
 	customer_labels

 	customer_labels_value

 	customer_statuses

 	customers_download, [1]

 	customers_in_level

 	customers_in_segment

D

 	
 	dashboard

 	
 	delivery

 	discount_code

E

 	
 	email

 	
 	emails

 	event

F

 	
 	flag

 	
 	fulfillment_tracking

G

 	
 	general

 	geolocation

 	
 	gift

 	grid_controls

I

 	
 	identification_factors

 	import_customers

 	information

 	
 	instant

 	Introduction

 	introduction, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	invitation

L

 	
 	last_purchase

 	level

 	level_activate

 	level_assigned

 	
 	level_creation

 	level_delete

 	level_downgrade_settings

 	level_updating

 	loyalty

M

 	
 	marketing_automation

 	matching_transaction

 	merchant

 	
 	merchant_account

 	messages

 	multiply

 	multiply_labels

P

 	
 	percentage

 	pos, [1]

 	pos_account

 	pos_details

 	product_labels

 	
 	product_purchase

 	profile

 	profitability

 	purchase_period

 	pushy

Q

 	
 	qrcode

R

 	
 	redeemed_rewards, [1]

 	referral

 	referred_customers, [1]

 	return_voucher

 	returns

 	
 	reward_activate

 	reward_availability

 	reward_updating

 	role_resources

 	rule_activate

 	rule_type

S

 	
 	segment_activate

 	segment_remove

 	segment_type

 	segment_updating

 	segments

 	settings, [1]

 	
 	sign_in

 	sku

 	sms

 	special_rewards

 	stores

 	system_logs

T

 	
 	template

 	timeline

 	transaction_count

 	transaction_details

 	transaction_import

 	transaction_labels

 	transaction_mass_matching

 	
 	transaction_pos

 	transaction_value

 	transactions

 	transfer

 	transfer_creation

 	transfer_details

 	transfer_import

 	translations

U

 	
 	update_pos

 	
 	updating

 	users

V

 	
 	value_code

W

 	
 	webhooks, [1]

 	
 	Welcome

X

 	
 	xml_customer

 	xml_points

 	
 	xml_transaction

 	xml_transaction_mass_matching

Campaign photos storage

Currently, all campaign photos are stored in the app/uploads directory.

This can be easily changed to another directory or even to cloud storage.

In order to do that, change the adapter_* entry in the Symfony config to your adapter defined
in src/Infrastructure/Core/Resources/config/config.yml at knp_gaufrette.adapters.

The complete reference on how to define an adapter can be found in the KnpGaufretterBundle documentation [https://github.com/KnpLabs/KnpGaufretteBundle]

Listening for system events

In many places of this system some system events are dispatched, e.g. oloy.account.available_points_amount_changed is dispatched when the available points
amount is changed.

It is possible to write a listener for such events and perform some custom actions.

Defining a listener:

oloy.my_custom_listener
 class: 'OpenLoyalty\Bundle\MyBundle\EventListener\MyCustomListener
 tags:
 - { name: broadway.event_listener, event: `oloy.account.available_points_amount_changed`, method: onPointsChanged}

Run a command inside docker container

The simplest way to run a command inside a container is to execute:

docker-compose exec -it open_loyalty_backend bash

This will bring up a container bash shell where you will be able to execute any command needed.

Just make sure that you are in the correct directory (/var/www/openloyalty)

and now feel free to execute composer install, phing setup or any other command.

Add label to Customer

To add label to a Customer, you need to call the /api/{storeCode}/customer/{customerId}/label` endpoint with the ``PUT method.

Definition

PUT /api/{storeCode}/customer/{customerId}/label

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the updated customer
belongs to.

	<customerId>

	query

	Customer ID

	labels[][key]

	query

	label key

	labels[][value]

	query

	label value

Example

curl -X POST \
 http://localhost:8181/DEFAULT/customer/28f79fe5-00af-41f6-9200-e59e86b0c67f/label \
 -H 'accept: application/json' \
 -H 'content-type: application/json' \
 -d '{
 "labels": [
 {"key": "keyA", "value": "valueA"},
 {"key": "keyB", "value": "valueB"}
]
 }'

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 OK

Remove label from a customer

To remove label from a customer, you need to call the /api/{storeCode}/customer/{customerId}/label endpoint with the DELETE method.

Definition

DELETE /api/{storeCode}/customer/{customerId}/label

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the updated customer
belongs to.

	<customerId>

	query

	Customer ID

	labels[][key]

	query

	label key

	labels[][value]

	query

	label value

Example

curl -X DELETE \
 http://localhost:8181/DEFAULT/customer/28f79fe5-00af-41f6-9200-e59e86b0c67f/label \
 -H 'accept: application/json' \
 -H 'content-type: application/json' \
 -d '{
 "labels": [
 {"key": "keyA", "value": "valueA"},
 {"key": "keyB", "value": "valueB"}
]
 }'

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

Level API

These endpoints will allow you to see the list of levels taken in Open Loyalty.

Get the complete list of levels

To retrieve a paginated list of levels, you need to call the /api/<storeCode>/level endpoint with the GET method.

Definition

GET /api/<storeCode>/level

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get levels of.

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/level \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

Translatable fields (name, description etc.) are returned in the given locale.

Example Response

STATUS: 200 OK

{
 "levels": [
 {
 "levelId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "name": "Bronze",
 "description": "Bronze level description",
 "hasPhoto": false,
 "active": true,
 "conditionValue": 0,
 "reward": {
 "name": "test reward",
 "value": 0.14,
 "code": "abc"
 },
 "specialRewards": [],
 "translations": [
 {
 "name": "Bronze",
 "description": "Bronze level description",
 "id": 16,
 "locale": "en"
 },
 {
 "name": "Brązowy",
 "description": "Opis poziomu brązowego",
 "id": 17,
 "locale": "pl"
 }
]
 },
 {
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e5fd94",
 "name": "Silver",
 "description": "Example silver level",
 "active": true,
 "conditionValue": 20,
 "hasPhoto": false,
 "reward": {
 "name": "test reward",
 "value": 0.15,
 "code": "abc"
 },
 "specialRewards": [],
 "translations": [
 {
 "name": "Silver",
 "description": "Example silver level",
 "id": 16,
 "locale": "en"
 },
 {
 "name": "Srebrny",
 "description": "Przykładowy poziom srebrny",
 "id": 17,
 "locale": "pl"
 }
]
 }
],
 "total": 2
}

Note

There may be legacy key names in objects returned (id, customersCount).
These are deprecated and may be removed without further notice. Please don’t use them in new applications.

Create a new level

To create a new level, you need to call the /api/<storeCode>/level/create endpoint with the POST method.

Definition

POST /api/<storeCode>/level/create

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to create level in.

	level[translations][en][name]

	request

	Level name in given locale.

	level[translations][en][description]

	request

	(optional) Level description in given locale.

	level[active]

	request

	(optional) Set 1 if active, otherwise 0

	level[conditionValue]

	request

	Condition value

	level[minOrder]

	request

	(optional) Minimum order value

	level[reward][name]

	request

	Reward name

	level[reward][value]

	request

	Reward value

	level[reward][code]

	request

	Reward code

	level[specialRewards][][active]

	request

	(optional) Set 1 if active, otherwise 0

	level[specialRewards][][code]

	request

	First special reward code

	level[specialRewards][][name]

	request

	First special reward name

	level[specialRewards][][startAt]

	request

	First special reward visible from YYYY-MM-DD HH:mm,
for example 2019-02-01 8:33.
(required only if ``allTimeVisible=0``)

	level[specialRewards][][endAt]

	request

	First special reward visible to YYYY-MM-DD HH:mm,
for example 2019-10-15 11:07.
(required only if ``allTimeVisible=0``)

	level[specialRewards][][value]

	request

	First special reward value

Example

curl http://localhost:8181/api/DEFAULT/level/create \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "level[translations][en][name]=Silver" \
 -d "level[translations][en][description]=Silver+description" \
 -d "level[active]=1" \
 -d "level[conditionValue]=4" \
 -d "level[minOrder]=1" \
 -d "level[reward][name]=reward4name" \
 -d "level[reward][value]=4" \
 -d "level[reward][code]=4" \
 -d "level[specialRewards][0][name]=specialreward4" \
 -d "level[specialRewards][0][value]=4" \
 -d "level[specialRewards][0][code]=4" \
 -d "level[specialRewards][0][active]=1" \
 -d "level[specialRewards][0][startAt]=2018-02-01+08:33" \
 -d "level[specialRewards][0][endAt]=2018-02-15+11:27"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "levelId": "46284528-de11-4049-af2e-d2540c6fd8c7"
}

Note

There may be another, legacy key in the object returned (id).
This id key is deprecated and may be removed without further notice.
Please don’t use it in new applications.

Get level details

To retrieve the details of a level, you need to call the /api/<storeCode>/level/<level> endpoint with the GET method.

Definition

GET /api/<storeCode>/level/<level>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get level from.

	<level>

	query

	Level ID

Example

To see the details of the level with id level = 000096cf-32a3-43bd-9034-4df343e5fd93, use the method below:

curl http://localhost:8181/api/DEFAULT/level/000096cf-32a3-43bd-9034-4df343e5fd93 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "levelId": "000096cf-32a3-43bd-9034-4df343e5fd93",
 "name": "Gold",
 "description": "Gold level description",
 "hasPhoto": false,
 "active": true,
 "conditionValue": 0,
 "reward": {
 "name": "test reward",
 "value": 0.14,
 "code": "abc"
 },
 "specialRewards": [],
 "translations": [
 {
 "name": "Gold",
 "description": "Gold level description",
 "id": 16,
 "locale": "en"
 },
 {
 "name": "Złoty",
 "description": "Opis poziomu złotego",
 "id": 17,
 "locale": "pl"
 }
]
}

Note

There may be legacy key names in the object returned (id, customersCount).
These are deprecated and may be removed without further notice. Please don’t use them in new applications.

Edit existing level

To edit an existing level, you need to call the /api/<storeCode>/level/<level> endpoint with the PUT method.

Definition

PUT /api/<storeCode>/level/<level>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the updated level belongs to.

	<level>

	query

	Level ID

	level[translations][en][name]

	request

	Level name in given locale.

	level[translations][en][description]

	request

	(optional) Level description in given locale.

	level[active]

	request

	(optional) Set 1 if active, otherwise 0

	level[conditionValue]

	request

	Condition value

	level[minOrder]

	request

	(optional) Minimum order value

	level[reward][name]

	request

	Reward name

	level[reward][value]

	request

	Reward value

	level[reward][code]

	request

	Reward code

	level[specialRewards][][active]

	request

	(optional) Set 1 if active, otherwise 0

	level[specialRewards][][code]

	request

	First special reward code

	level[specialRewards][][name]

	request

	First special reward name

	level[specialRewards][][startAt]

	request

	First special reward visible from YYYY-MM-DD HH:mm,
for example 2019-02-01 8:33.
(required only if ``allTimeVisible=0``)

	level[specialRewards][][endAt]

	request

	First special reward visible to YYYY-MM-DD HH:mm,
for example 2019-10-15 11:07.
(required only if ``allTimeVisible=0``)

	level[specialRewards][][value]

	request

	First special reward value

Example

To change the level with id level = c343a12d-b4dd-4dee-b2cd-d6fe1b021115, use the method below:

curl http://localhost:8181/api/DEFAULT/level/c343a12d-b4dd-4dee-b2cd-d6fe1b021115 \
 -X "PUT" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "level[translations][en][name]=Gold" \
 -d "level[translations][en][description]=gold-level-description" \
 -d "level[active]=1" \
 -d "level[conditionValue]=3" \
 -d "level[minOrder]=3" \
 -d "level[reward][name]=reward3xyzname" \
 -d "level[reward][value]=3" \
 -d "level[reward][code]=3" \
 -d "level[specialRewards][0][name]=special-reward-for-customer" \
 -d "level[specialRewards][0][value]=3" \
 -d "level[specialRewards][0][code]=3" \
 -d "level[specialRewards][0][active]=1" \
 -d "level[specialRewards][0][startAt]=2018-02-01+8:20" \
 -d "level[specialRewards][0][endAt]=2017-10-15+13:07"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "levelId": "c343a12d-b4dd-4dee-b2cd-d6fe1b021115"
}

Note

There may be another, legacy key in the object returned (id).
This id key is deprecated and may be removed without further notice.
Please don’t use it in new applications.

Activate or deactivate level

To activate or deactivate a level, you need to call the /api/<storeCode>/level/<level>/activate endpoint with the POST method.

Definition

POST /api/<storeCode>/level/<level>/activate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the level belongs to.

	<level>

	query

	Level ID

	active

	query

	Set 1 if active, otherwise 0

Example

To activate the level with id level = c343a12d-b4dd-4dee-b2cd-d6fe1b021115, use the method below:

curl http://localhost:8181/api/DEFAULT/level/c343a12d-b4dd-4dee-b2cd-d6fe1b021115/activate \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "active=1"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

Delete a level

To remove a level from database, you need to call the /api/<storeCode>/level/<level> endpoint with the DELETE method.

Definition

DELETE /api/<storeCode>/level/<level>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the level belongs to.

	<level>

	query

	Level ID

Example

To remove the level with id level = 000096cf-32a3-43bd-9034-4df343e5fd93, use the method below:

curl http://localhost:8181/api/DEFAULT/level/000096cf-32a3-43bd-9034-4df343e5fd93 \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

Get a list of customers assigned to specific level

To retrieve a list of customers assigned to a level, you need to call the /api/<storeCode>/level/<level>/customers endpoint with the GET method.

Definition

GET /api/<storeCode>/level/<level>/customers

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the level belongs to.

	<level>

	query

	Level ID

Example

To see the list of customers for the level with id level = 000096cf-32a3-43bd-9034-4df343e5fd93, use the method below:

curl http://localhost:8181/api/DEFAULT/admin/level/000096cf-32a3-43bd-9034-4df343e5fd93/customers \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "customers": [
 {
 "customerId": "e7306b21-0732-42e5-9f88-ccf311a0f43d",
 "firstName": "Tomasz",
 "lastName": "Test7",
 "email": "tomasztest7@wp.pl"
 },
 {
 "customerId": "b9af6a8c-9cc5-4924-989c-e4af614ab2a3",
 "firstName": "alina",
 "lastName": "test",
 "email": "qwe@test.pl"
 },
 {
 "customerId": "00000000-0000-474c-b092-b0dd880c07e2",
 "firstName": "Jane",
 "lastName": "Doe",
 "email": "user-temp@example.com"
 },
 {
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "firstName": "John",
 "lastName": "Doe",
 "email": "user@example.com"
 }
],
 "total": 4
}

Get level’s photo

To get a level’s photo, you need to call the /api/<storeCode>/level/<level>/photo endpoint with the GET method.

Definition

GET /api/<storeCode>/level/<level>/photo

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the level belongs to.

	<level>

	query

	Level ID

Example

To get a photo of the level with id level = 00096cf-32a3-43bd-9034-4df343e5fd94, use the method below:

curl http://localhost:8181/api/DEFAULT/level/00096cf-32a3-43bd-9034-4df343e5fd94/photo \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The level = 00096cf-32a3-43bd-9034-4df343e5fd94 id is an example value. Your value may be different.
Check the list of all levels if you are not sure which id should be used.

Example Response

STATUS: 200 OK

Note

In the response you will get a raw file content with a proper Content-Type header, for example:
Content-Type: image/jpeg.

Example Response

The level may not have a photo at all. In that case, you will receive the following response:

STATUS: 404 Not Found

{
 "error": {
 "code": 404,
 "message": "Not Found"
 }
}

Remove level’s photo

To remove a photo of a level, you need to call the /api/<storeCode>/level/<level>/photo endpoint with the DELETE method.

Definition

DELETE /api/<storeCode>/level/<level>/photo

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the level belongs to.

	<level>

	query

	Level ID

Example

To remove a photo for the level level = 00096cf-32a3-43bd-9034-4df343e5fd94, use the method below:

curl http://localhost:8181/api/DEFAULT/level/00096cf-32a3-43bd-9034-4df343e5fd94/photo \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The level = 00096cf-32a3-43bd-9034-4df343e5fd94 id is an example value. Your value may be different.
Check in the list of all levels if you are not sure which id should be used.

Example Response

STATUS: 200 OK

Add a photo to a level

To add a photo to a level, you need to call the /api/<storeCode>/level/<level>/photo endpoint with the POST method.

Definition

POST /api/<storeCode>/level/<level>/photo

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the level belongs to.

	<level>

	query

	Level ID

	photo[file]

	request

	Absolute path to the photo

Example

To get a photo for the level level = 00096cf-32a3-43bd-9034-4df343e5fd94, use the method below:

curl http://localhost:8181/api/DEFAULT/level/00096cf-32a3-43bd-9034-4df343e5fd94/photo \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "photo[file]=C:\fakepath\Photo.png"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The level = 00096cf-32a3-43bd-9034-4df343e5fd94 id is an example value. Your value may be different.
Check in the list of all levels if you are not sure which id should be used.

Note

The photo[file]=C:fakepathPhoto.png is an example value. Your value may be different.

Example Response

STATUS: 200 OK

POS API

These endpoints will allow you to see the list of POS taken in Open Loyalty.

Get the complete list of POS

To retrieve a complete list of POS, you need to call the /api/<storeCode>/pos endpoint with the GET method.

Definition

GET /api/<storeCode>/pos

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get POS from.

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/pos \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value can be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "pos": [
 {
 "posId": "00000000-0000-474c-1111-b0dd880c07e2",
 "name": "test2",
 "identifier": "pos1",
 "description": "test",
 "location": {
 "street": "Dmowskiego",
 "address1": "21",
 "province": "Dolnośląskie",
 "city": "Wrocław",
 "postal": "50-300",
 "country": "PL",
 "geoPoint": {
 "lat": "51.1170364",
 "long": "17.0203959"
 }
 },
 "transactionsAmount": 133.4,
 "transactionsCount": 3,
 "currency": "eur"
 },
 {
 "posId": "00000000-0000-474c-1111-b0dd880c07e3",
 "name": "test1",
 "identifier": "pos2",
 "description": "test",
 "location": {
 "street": "Dmowskiego",
 "address1": "21",
 "province": "Dolnośląskie",
 "city": "Warszawa",
 "postal": "50-300",
 "country": "PL",
 "geoPoint": {
 "lat": "51.1170364",
 "long": "17.0203959"
 }
 },
 "transactionsAmount": 0,
 "transactionsCount": 0,
 "currency": "eur"
 }
],
 "total": 2
}

Create a new POS

To create a new POS, you need to call the /api/<storeCode>/pos endpoint with the POST method.

Definition

POST /api/<storeCode>/pos

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to create POS in.

	pos[name]

	request

	POS name

	pos[identifier]

	request

	POS Identifier

	pos[description]

	request

	(optional) A short description

	pos[location][street]

	request

	Street for POS Location

	pos[location][address1]

	request

	Address1 for POS Location

	pos[location][address2]

	request

	(optional) Address2 for POS Location

	pos[location][postal]

	request

	Post code for POS Location

	pos[location][city]

	request

	City for POS Location

	pos[location][province]

	request

	Province for POS Location

	pos[location][country]

	request

	Country for POS Location

	pos[location][lat]

	request

	(optional) Latitude for POS Location

	pos[location][long]

	request

	(optional) Longitude for POS Location

Example

curl http://localhost:8181/api/DEFAULT/pos \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "pos[name]=testname" \
 -d "pos[identifier]=testid" \
 -d "pos[description]=testdescription" \
 -d "pos[location][street]=polna" \
 -d "pos[location][address1]=24" \
 -d "pos[location][address2]=5" \
 -d "pos[location][postal]=98-765" \
 -d "pos[location][city]=Wroclaw" \
 -d "pos[location][province]=WroclawProvince" \
 -d "pos[location][country]=Poland" \
 -d "pos[location][lat]=latitude" \
 -d "pos[location][long]=longitude"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value can be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "posId": "fe28cf15-9c95-46ee-bc7a-c40b2f2f0d40"
}

Get POS details

To retrieve the POS details, you need to call the /api/<storeCode>/pos/identifier/<pos> endpoint with the GET method.

Definition

GET /api/<storeCode>/pos/identifier/<pos>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get POS from.

	<pos>

	query

	POS identifier

Example

To see the details of the POS with id pos = testid9, use the method below:

curl http://localhost:8181/api/DEFAULT/pos/identifier/testid9 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value can be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "posId": "6235a987-1639-420f-8001-537f0f2eeafa",
 "name": "test9",
 "identifier": "testid9",
 "description": "test9description",
 "location": {
 "street": "topolowa",
 "address1": "9",
 "address2": "1",
 "province": "Warsaw",
 "city": "Warsaw",
 "postal": "99-999",
 "country": "PL"
 },
 "transactionsAmount": 0,
 "transactionsCount": 0,
 "currency": "eur"
}

Get POS details

To retrieve the POS details, you need to call the /api/<storeCode>/pos/<pos> endpoint with the GET method.

Definition

GET /api/<storeCode>/pos/<pos>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get POS from.

	<pos>

	query

	POS identifier

Example

To see the details of the POS with id pos = 00000000-0000-474c-1111-b0dd880c07e3, use the method below:

curl http://localhost:8181/api/DEFAULT/pos/00000000-0000-474c-1111-b0dd880c07e3 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value can be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "posId": "00000000-0000-474c-1111-b0dd880c07e3",
 "name": "test1",
 "identifier": "pos2",
 "description": "test",
 "location": {
 "street": "Dmowskiego",
 "address1": "21",
 "province": "Dolnośląskie",
 "city": "Warszawa",
 "postal": "50-300",
 "country": "PL",
 "geoPoint": {
 "lat": "51.1170364",
 "long": "17.0203959"
 }
 },
 "transactionsAmount": 0,
 "transactionsCount": 0,
 "currency": "eur"
}

Update POS data

To update the POS data, you need to call the /api/<storeCode>/pos/<pos> endpoint with the PUT method.

Definition

PUT /api/<storeCode>/pos/<pos>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to update the POS in.

	<pos>

	query

	POS ID

	pos[name]

	request

	POS name

	pos[identifier]

	request

	POS Identifier

	pos[description]

	request

	(optional) A short description

	pos[location][street]

	request

	Street for POS Location

	pos[location][address1]

	request

	Building name for POS Location

	pos[location][address2]

	request

	(optional) Flat/Unit name for POS Location

	pos[location][postal]

	request

	Post code for POS Location

	pos[location][city]

	request

	City for POS Location

	pos[location][province]

	request

	Province for POS Location

	pos[location][country]

	request

	Country for POS Location

	pos[location][lat]

	request

	(optional) Latitude for POS Location

	pos[location][long]

	request

	(optional) Longitude for POS Location

Example

To fully update the POS with id = 857b2a26-b490-4356-8828-e138deaf7912, use the method below:

curl http://localhost:8181/api/DEFAULT/pos/857b2a26-b490-4356-8828-e138deaf7912 \
 -X "PUT" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "pos[name]=test8" \
 -d "pos[identifier]=testid8" \
 -d "pos[description]=test8description" \
 -d "pos[location][street]=kwiatowa" \
 -d "pos[location][address1]=66" \
 -d "pos[location][address2]=33" \
 -d "pos[location][postal]=666-333" \
 -d "pos[location][city]=Honolulu" \
 -d "pos[location][province]=HonululuProvince" \
 -d "pos[location][country]=USA" \
 -d "pos[location][lat]=latitude8" \
 -d "pos[location][long]=longitude8"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value can be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "posId": "857b2a26-b490-4356-8828-e138deaf7912"
}

Segment API

These endpoints will allow you to retrieve information and manage the segments used in your instance of Open Loyalty.

Get segments list

To retrieve a paginated list of segments, you need to call the /api/<storeCode>/segment endpoint with the GET method.

Definition

GET /api/<storeCode>/segment

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the segments of.

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/segment \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "segments": [
 {
 "segmentId": "00000000-0000-0000-0000-000000000005",
 "name": "transaction amount 10-50",
 "description": "desc",
 "active": false,
 "parts": [
 {
 "segmentPartId": "00000000-0000-0000-0000-000000000055",
 "criteria": [
 {
 "criterionId": "00000000-0000-0000-0000-000000000055",
 "fromAmount": 10,
 "toAmount": 50,
 "type": "transaction_amount"
 }
]
 }
],
 "createdAt": "2018-02-19T09:45:06+0100",
 "customersCount": 0,
 "averageTransactionAmount": 0,
 "averageTransactions": 0,
 "averageClv": 0,
 "currency": "EUR"
 },
 {
 "segmentId": "00000000-0000-0000-0000-000000000000",
 "name": "test",
 "description": "desc",
 "active": false,
 "parts": [
 {
 "segmentPartId": "00000000-0000-0000-0000-000000000000",
 "criteria": [
 {
 "criterionId": "00000000-0000-0000-0000-000000000002",
 "min": 10,
 "max": 20,
 "type": "transaction_count"
 },
 {
 "criterionId": "00000000-0000-0000-0000-000000000001",
 "fromAmount": 1,
 "toAmount": 10000,
 "type": "average_transaction_amount"
 },
 {
 "criterionId": "00000000-0000-0000-0000-000000000000",
 "posIds": [
 "00000000-0000-474c-1111-b0dd880c07e2"
],
 "type": "bought_in_pos"
 }
]
 }
],
 "createdAt": "2018-02-19T09:45:06+0100",
 "customersCount": 0,
 "averageTransactionAmount": 0,
 "averageTransactions": 0,
 "averageClv": 0,
 "currency": "EUR"
 }
],
 "total": 2
}

Create new segment

To create a new segment, you need to call the /api/<storeCode>/segment endpoint with the POST method.

Definition

POST /api/<storeCode>/segment

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to create the segment in.

	segment[name]

	request

	Segment name

	segment[active]

	request

	(optional) Set 1 if active, otherwise 0

	segment[description]

	request

	(optional) A short description

	segment[parts][0][criteria][0][type]

	request

	Criterion type. It can be one of the following:
anniversary, bought_in_pos, transaction_count,
transaction_amount, average_transaction_amount,
last_purchase_n_days_before, purchase_period,
transaction_percent_in_pos, bought_skus, bought_makers,
bought_labels, customer_has_labels,
customer_has_labels_with_values, customer_list.

	segment[parts][0][criteria][0][days]

	request

	Segment width in days. If set to 1, only customers with anniversary on
this exact date are in the segment.
(required) for anniversary criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][anniversaryType]

	request

	Anniversary type: birthday or registration.
(required) for anniversary criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][fromAmount]

	request

	Minimum value of transactions.
(required) for average_transaction_amount and transaction_amount
criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][toAmount]

	request

	Maximum value of transactions.
(required) for average_transaction_amount and transaction_amount
criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][posIds][]

	request

	One or more UUIDs of POS.
(required) minimum 1 in collection for bought_in_pos criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][posId]

	request

	Exactly one UUID of POS.
(required) for transaction_percent_in_pos criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][percent]

	request

	Treshold percent value.
(required) for transaction_percent_in_pos criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][makers][]

	request

	One of more brands.
(required) minimum 1 in collection for bought_makers criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][skuIds][]

	request

	One or more SKUs.
(required) minimum 1 in collection for bought_skus criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][labels][]

	request

	One or more Labels, which apply either to the product or the customer.
Each label is an array of key and value elements:
...[labels][0][key]=key_one&...[labels][0][value]=value_one .
For customer_has_labels criterions, there should be no value element.
(required) minimum 1 in collection for bought_labels,
customer_has_labels and customer_has_labels_with_values
criterion types.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][days]

	request

	Segment includes customers who shopped at least this many days ago.
1 is yesterday.
(required) for last_purchase_n_days_before criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][fromDate]

	request

	Start of date range.
(required) for purchase_period criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][toDate]

	request

	End of time range.
(required) for purchase_period criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][min]

	request

	Minimum transaction count.
(required) for transaction_count criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][max]

	request

	Maximum transaction count.
(required) for transaction_count criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][customers][]

	request

	One or more Customers, identified by UUID, phone, loyalty card number,
or e-mail address. Identifiers don’t have to be of the same type.
(required) minimum 1 in collection for customer_list criterion type.
(forbidden) for other criterion types.

Example

curl http://localhost:8181/api/DEFAULT/segment/00000000-0000-0000-0000-000000000002` \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."
 -d "segment[name]=testsm" \
 -d "segment[active]=1" \
 -d "segment[description]=testsmdescription" \
 -d "segment[parts][0][criteria][0][type]=anniversary" \
 -d "segment[parts][0][criteria][0][days]=2" \
 -d "segment[parts][0][criteria][0][anniversaryType]=registration"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

To create an OR condition, add another SegmentPart element in the segment[parts] array.
To create an AND condition, add another Criterion element in the segment[parts][<part_element>][criteria] array.

Example Response

STATUS: 200 OK

{
 "segmentId": "17347292-0aaf-4c25-9118-17eb2c55b58b"
}

Delete segment

To delete a segment, you need to call the /api/<storeCode>/segment/<segment> endpoint with the DELETE method.

Definition

DELETE /api/<storeCode>/segment/<segment>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the segment belongs to.

	<segment>

	query

	Segment ID

Example

curl http://localhost:8181/api/DEFAULT/segment/f9a64320-0e93-42b9-882c-43cd477156cf \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

The f9a64320-0e93-42b9-882c-43cd477156cf segment ID is an example value.
Your value may be different. Check the list of all segments if you are not sure which id should be used.

Example Response

STATUS: 204 No Content

Get segment details

To retrieve segment details, you need to call the /api/<storeCode>/segment/<segment> endpoint with the GET method.

Definition

GET /api/<storeCode>/segment/<segment>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the segment belongs to.

	<segment>

	query

	Segment ID

Example

To see the details of the customer user with segment = 00000000-0000-0000-0000-000000000002, use the method below:

curl http://localhost:8181/api/DEFAULT/segment/00000000-0000-0000-0000-000000000002` \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "segmentId": "00000000-0000-0000-0000-000000000002",
 "name": "anniversary",
 "description": "desc",
 "active": false,
 "parts": [
 {
 "segmentPartId": "00000000-0000-0000-0000-000000000001",
 "criteria": [
 {
 "criterionId": "00000000-0000-0000-0000-000000000011",
 "anniversaryType": "birthday",
 "days": 10,
 "type": "anniversary"
 }
]
 }
],
 "createdAt": "2018-02-19T09:45:06+0100",
 "customersCount": 0,
 "averageTransactionAmount": 0,
 "averageTransactions": 0,
 "averageClv": 0,
 "currency": "EUR"
}

Update segment data

To fully update segment’s configuration, you need to call the /api/<storeCode>/segment/<segment> endpoint with the PUT method.

Definition

PUT /api/<storeCode>/segment/<segment>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the segment belongs to.

	<segment>

	query

	Segment ID

	segment[name]

	request

	Segment name

	segment[active]

	request

	(optional) Set 1 if active, otherwise 0

	segment[description]

	request

	(optional) A short description

	segment[parts][0][criteria][0][type]

	request

	Criterion type. It can be one of the following:
anniversary, bought_in_pos, transaction_count,
transaction_amount, average_transaction_amount,
last_purchase_n_days_before, purchase_period,
transaction_percent_in_pos, bought_skus, bought_makers,
bought_labels, customer_has_labels,
customer_has_labels_with_values, customer_list.

	segment[parts][0][criteria][0][days]

	request

	Segment width in days. If set to 1, only customers with anniversary on
this exact date are in the segment.
(required) for anniversary criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][anniversaryType]

	request

	Anniversary type: birthday or registration.
(required) for anniversary criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][fromAmount]

	request

	Minimum value of transactions.
(required) for average_transaction_amount and transaction_amount
criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][toAmount]

	request

	Maximum value of transactions.
(required) for average_transaction_amount and transaction_amount
criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][posIds][0]

	request

	One or more UUIDs of POS.
(required) minimum 1 in collection for bought_in_pos criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][posId]

	request

	Exactly one UUID of POS.
(required) for transaction_percent_in_pos criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][percent]

	request

	Treshold percent value.
(required) for transaction_percent_in_pos criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][makers][0]

	request

	One of more brands.
(required) minimum 1 in collection for bought_makers criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][skuIds][0]

	request

	One or more SKUs.
(required) minimum 1 in collection for bought_skus criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][labels][0]

	request

	One or more Labels, which apply either to the product or the customer.
Each label is an array of key and value elements:
...[labels][0][key]=key_one&...[labels][0][value]=value_one .
For customer_has_labels criterions, there should be no value element.
(required) minimum 1 in collection for bought_labels,
customer_has_labels and customer_has_labels_with_values
criterion types.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][days]

	request

	Segment includes customers who shopped at least this many days ago.
1 is yesterday.
(required) for last_purchase_n_days_before criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][fromDate]

	request

	Start of date range.
(required) for purchase_period criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][toDate]

	request

	End of time range.
(required) for purchase_period criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][min]

	request

	Minimum transaction count.
(required) for transaction_count criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][max]

	request

	Maximum transaction count.
(required) for transaction_count criterion type.
(forbidden) for other criterion types.

	segment[parts][0][criteria][0][customers][0]

	request

	One or more Customer UUIDs.
(required) minimum 1 in collection for customer_list criterion type.
(forbidden) for other criterion types.

Example

To update the details of a segment with id segment = 17347292-0aaf-4c25-9118-17eb2c55b58b, use the method below:

curl http://localhost:8181/api/DEFAULT/segment/17347292-0aaf-4c25-9118-17eb2c55b58b \
 -X "PUT" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "segment[name]=tests" \
 -d "segment[active]=0" \
 -d "segment[description]=tests" \
 -d "segment[parts][0][criteria][0][type]=anniversary" \
 -d "segment[parts][0][criteria][0][days]=2" \
 -d "segment[parts][0][criteria][0][anniversaryType]=birthday"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Note

To create an OR condition, add another SegmentPart element in the segment[parts] array.
To create an AND condition, add another Criterion element in the segment[parts][<part_element>][criteria] array.

Example Response

STATUS: 200 OK

{
 "segmentId": "17347292-0aaf-4c25-9118-17eb2c55b58b"
}

Activate segment

To activate a segment, you need to call the /api/<storeCode>/segment/<segment>/activate endpoint with the POST method.

Definition

POST /api/<storeCode>/segment/<segment>/activate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the segment belongs to.

	<segment>

	query

	Segment ID

Example

curl http://localhost:8181/api/DEFAULT/segment/63afec60-5e74-43fc-a5e1-81bbc03421ca/activate \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

Get customers assigned to specific segment

To retrieve a paginated list of customers assigned to a specific segment, you need to call the /api/<storeCode>/segment/<segment>/customers endpoint with the GET method.

Definition

GET /api/<storeCode>/segment/<segment>/customers

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the segment belongs to.

	<segment>

	query

	Segment ID

	firstName

	query

	(optional) First Name

	lastName

	query

	(optional) Last Name

	phone

	query

	(optional) Phone

	email

	query

	(optional) E-mail

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/segment/63afec60-5e74-43fc-a5e1-81bbc03421ca/customers \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Attention

Pagination limitation, we can only show 10,000 results. 10,000 is a limit and can be found in the .env file.

Example Response

STATUS: 200 OK

{
 "customers": [
 {
 "segmentId": "63afec60-5e74-43fc-a5e1-81bbc03421ca",
 "customerId": "57524216-c059-405a-b951-3ab5c49bae14",
 "segmentName": "test123",
 "firstName": "Tomasz",
 "lastName": "Test80",
 "email": "tomasztest80@wp.pl",
 "active": true,
 "address": [],
 "createdAt": "2018-02-20T08:22:11+0100",
 "levelId": "000096cf-32a3-43bd-9034-4df343e5fd94",
 "manuallyAssignedLevelId": {
 "levelId": "000096cf-32a3-43bd-9034-4df343e5fd94"
 },
 "agreement1": true,
 "agreement2": false,
 "agreement3": false,
 "status": {
 "availableTypes": [
 "new",
 "active",
 "blocked",
 "deleted"
],
 "availableStates": [
 "no-card",
 "card-sent",
 "with-card"
],
 "type": "active",
 "state": "no-card"
 },
 "updatedAt": "2018-02-20T08:22:12+0100",
 "campaignPurchases": [],
 "transactionsCount": 1,
 "transactionsAmount": 44.97,
 "transactionsAmountWithoutDeliveryCosts": 44.97,
 "amountExcludedForLevel": 0,
 "averageTransactionAmount": 44.97,
 "lastTransactionDate": "2018-02-20T07:24:19+0100",
 "currency": "eur",
 "levelPercent": "20.00%"
 }
],
 "total": 1
}

Deactivate segment

To deactivate a segment, you need to call the /api/<storeCode>/segment/<segment>/deactivate endpoint with the POST method.

Definition

POST /api/<storeCode>/segment/<segment>/deactivate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the segment belongs to.

	<segment>

	query

	Segment ID

Example

curl http://localhost:8181/api/DEFAULT/segment/63afec60-5e74-43fc-a5e1-81bbc03421ca/deactivate \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 204 No Content

Seller API

These endpoints will allow you to see the list of sellers in Open Loyalty.

Get list of sellers

To retrieve a paginated list of sellers, you need to call the /api/<storeCode>/seller endpoint with the GET method.

Definition

GET /api/<storeCode>/seller

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get sellers from.

	firstName

	query

	(optional) First Name

	lastName

	query

	(optional) Last Name

	phone

	query

	(optional) Phone

	email

	query

	(optional) E-mail

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name,
by default = name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/seller \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Attention

Pagination limitation, we can only show 10,000 results. 10,000 is a limit and can be found in the .env file.

Example Response

STATUS: 200 OK

{
 "sellers": [
 {
 "name": "John2 Doe2",
 "sellerId": "00000000-0000-474c-b092-b0dd880c07e5",
 "firstName": "John2",
 "lastName": "Doe2",
 "email": "john2@doe2.com",
 "phone": "0000000011",
 "posId": "00000000-0000-474c-1111-b0dd880c07e3",
 "posName": "test1",
 "posCity": "Warszawa",
 "active": true,
 "deleted": false
 },
 {
 "name": "John Doe",
 "sellerId": "00000000-0000-474c-b092-b0dd880c07e4",
 "firstName": "John",
 "lastName": "Doe",
 "email": "john@doe.com",
 "phone": "0000000011",
 "posId": "00000000-0000-474c-1111-b0dd880c07e2",
 "posName": "test2",
 "posCity": "Wrocław",
 "active": true,
 "deleted": false
 }
],
 "total": 2
}

Register new seller

To register a new seller, you need to call the /api/<storeCode>/seller/register endpoint with the POST method.

Definition

POST /api/<storeCode>/seller/register

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to register new seller in.

	seller[firstName]

	request

	First name

	seller[lastName]

	request

	Last name

	seller[active]

	request

	(optional) Set 1 if active, otherwise 0

	seller[email]

	request

	E-mail

	seller[phone]

	request

	(optional) Phone

	seller[plainPassword]

	request

	Password

	seller[posId]

	request

	Type of POS

Example

curl http://localhost:8181/api/DEFAULT/seller/register \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "seller[firstName]=John" \
 -d "seller[lastName]=Travolta" \
 -d "seller[active]=1" \
 -d "seller[email]=john@travolta.com" \
 -d "seller[phone]=999888777" \
 -d "seller[posId]=00000000-0000-474c-1111-b0dd880c07e3" \
 -d "seller[plainPassword]=admin123"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "sellerId": "8b6cf775-f87f-4150-b5f3-0e60e57e2678",
 "password": "admin123",
 "email": "john@travolta.com"
}

Get seller details

To retrieve seller details, you need to call the /api/<storeCode>/seller/<seller> endpoint with the GET method.

Definition

GET /api/<storeCode>/seller/<seller>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get seller from.

	<seller>

	query

	Seller ID

Example

To see the details of the seller user with id seller = 00000000-0000-474c-b092-b0dd880c07e4, use the method below:

curl http://localhost:8181/api/DEFAULT/seller/00000000-0000-474c-b092-b0dd880c07e4` \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "name": "John Doe",
 "sellerId": "00000000-0000-474c-b092-b0dd880c07e4",
 "firstName": "John",
 "lastName": "Doe",
 "email": "john@doe.com",
 "phone": "0000000011",
 "posId": "00000000-0000-474c-1111-b0dd880c07e2",
 "posName": "test2",
 "posCity": "Wrocław",
 "active": true,
 "deleted": false
}

Update seller details

To fully update seller details for a user, you need to call the /api/<storeCode>/seller/<seller> endpoint with the PUT method.

Definition

PUT /api/<storeCode>/seller/<seller>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the updated seller belongs to.

	<seller>

	query

	Seller ID

	seller[firstName]

	request

	First name

	seller[lastName]

	request

	Last name

	seller[active]

	request

	(optional) Set 1 if active, otherwise 0

	seller[email]

	request

	E-mail

	seller[phone]

	request

	(optional) Phone

	seller[plainPassword]

	request

	Password

	seller[posId]

	request

	Type of POS

Example

curl http://localhost:8181/api/DEFAULT/seller/00000000-0000-474c-b092-b0dd880c07e4 \
 -X "PUT" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "seller[firstName]=Jacek" \
 -d "seller[lastName]=Kowalski" \
 -d "seller[active]=0" \
 -d "seller[email]=jacek@kowalski.pl" \
 -d "seller[phone]=555444333" \
 -d "seller[posId]=00000000-0000-474c-1111-b0dd880c07e2" \
 -d "seller[plainPassword]=admin"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

{
 "sellerId": "00000000-0000-474c-b092-b0dd880c07e4"
}

Activate seller

To activate a seller, you need to call the /api/<storeCode>/seller/<seller>/activate endpoint with the POST method.

Definition

POST /api/<storeCode>/seller/<seller>/activate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to activate the seller in.

	<seller>

	query

	Seller ID

Example

To activate a seller user with id seller = 00000000-0000-474c-b092-b0dd880c07e4, use the method below:

curl http://localhost:8181/api/DEFAULT/seller/00000000-0000-474c-b092-b0dd880c07e4/activate \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

(no content)

Deactivate seller

To deactivate a seller, you need to call the /api/<storeCode>/seller/<seller>/deactivate endpoint with the POST method.

Definition

POST /api/<storeCode>/seller/<seller>/deactivate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to deactivate seller in.

	<seller>

	query

	Seller ID

Example

To deactivate a seller user with id seller = 00000000-0000-474c-b092-b0dd880c07e4, use the method below:

curl http://localhost:8181/api/DEFAULT/seller/00000000-0000-474c-b092-b0dd880c07e4/deactivate \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

(no content)

Delete seller

To delete a seller, you need to call the /api/<storeCode>/seller/<seller>/delete endpoint with the POST method.

Definition

POST /api/<storeCode>/seller/<seller>/delete

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the seller belongs to.

	<seller>

	query

	Seller ID

Example

To delete a seller user with id seller = 00000000-0000-474c-b092-b0dd880c07e4, use the method below:

curl http://localhost:8181/api/DEFAULT/seller/00000000-0000-474c-b092-b0dd880c07e4/delete \
 -X "POST" \
 -H "Accept:\ application/json" \
 -H "Content-type:\ application/x-www-form-urlencoded" \
 -H "Authorization:\ Bearer\ eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Example Response

STATUS: 200 OK

(no content)

Settings API

These endpoints will allow you to see the list of settings in Open Loyalty.

Get list of translations

To retrieve a paginated list of available translations, you need to call the /api/admin/translations endpoint with the GET method.

Definition

GET /api/admin/translations

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

Example

curl http://localhost:8181/api/admin/translations \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "translations": [
 {
 "code": "en",
 "name": "English",
 "default": true,
 "order": 0,
 "updatedAt": "2018-07-24T10:25:13+0200"
 }
],
 "total": 1
}

Create new translations

To add new translations, you need to call the /api/admin/translations endpoint with the POST method.

Definition

POST /api/admin/translations

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	translation[name]

	query

	Translation name

	translation[code]

	query

	Translation code

	translation[default]

	query

	Is this translation default

	translation[order]

	query

	Translation order

	translation[content]

	query

	Translation content

Example

curl http://localhost:8181/api/admin/translations \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "translation[name]=english123" \
 -d "translation[code]=en" \
 -d "translation[default]=1" \
 -d "translation[order]=0" \
 -d "translation[content]={\"key.confirmation.title\":{\"description\":\"{variable}+Title+for+that+dialog\",\"message\":+\"Hello\"}}"

Example Response

STATUS: 200 OK

{
 "code": "en",
 "name": "english123",
 "default": true,
 "order": 0,
 "content": "{\"key.confirmation.title\": \"description\"}"
}

Get translations based on the locale code

To retrieve a paginated list of translations for one of the languages, you need to call the /api/admin/translations/<code> endpoint with the GET method.

Definition

GET /api/admin/translations/<code>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<code>

	query

	Translation code

Example

curl http://localhost:8181/api/admin/translations/en \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "name": "english",
 "code": "en",
 "default": true,
 "order": 0,
 "content": "{\"key.confirmation.title\": \"description\"}"
 "updatedAt": "2018-02-26T12:43:01+0100"
}

Update all translations and locale data

To update the whole locale, you need to call the /api/admin/translations/<code> endpoint with the PUT method.

Definition

PUT /api/admin/translations/<code>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<code>

	query

	Translation code

	translation[name]

	query

	Translation name

	translation[default]

	query

	Is this translation default

	translation[order]

	query

	Translation order

	translation[content]

	query

	Translation content

Example

curl http://localhost:8181/api/admin/translations/en \
 -X "PUT" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "name": "english",
 "code": "en",
 "default": true,
 "order": 0,
 "content": "{\"key.confirmation.title\": \"description\"}"
 "updatedAt": "2018-02-26T12:43:01+0100"
}

Remove a whole locale

To remove a whole locale along with its translations, you need to call the /api/admin/translations/<code> endpoint with the DELETE method.

Definition

DELETE /api/admin/translations/<code>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<code>

	query

	Translation code

Example

curl http://localhost:8181/api/admin/translations/en \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{}

Get all system settings

To retrieve a list of all system settings, you need to call the /api/<storeCode>/settings endpoint with the GET method.

Definition

GET /api/<storeCode>/settings

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get settings of.

Example

curl http://localhost:8181/api/DEFAULT/settings \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
"settings": {
 "logo": {
 "path": "logo/logo.png",
 "mime": "image/png",
 "sizes": []
 },
 "small-logo": {
 "path": "logo/small-logo.png",
 "mime": "image/png",
 "sizes": []
 },
 "hero-image": {
 "path": "logo/hero-image.png",
 "mime": "image/png",
 "sizes": []
 },
 "admin-cockpit-logo": {
 "path": "logo/admin-cockpit-logo.png",
 "mime": "image/png",
 "sizes": []
 },
 "client-cockpit-logo-big": {
 "path": "logo/client-cockpit-logo-big.png",
 "mime": "image/png",
 "sizes": []
 },
 "client-cockpit-logo-small": {
 "path": "logo/client-cockpit-logo-small.png",
 "mime": "image/png",
 "sizes": []
 },
 "client-cockpit-hero-image": {
 "path": "logo/client-cockpit-hero-image.png",
 "mime": "image/png",
 "sizes": []
 },
 "excludedLevelCategories": [
 "category_excluded_from_level"
],
 "customersIdentificationPriority": [
 {
 "priority": 1,
 "field": "email"
 },
 {
 "priority": 2,
 "field": "loyaltyCardNumber"
 },
 {
 "priority": 3,
 "field": "phone"
 }
],
 "excludedDeliverySKUs": [],
 "excludedLevelSKUs": [
 "s"
],
 "returns": true,
 "allowCustomersProfileEdits": true,
 "allTimeNotLocked": true,
 "levelResetPointsOnDowngrade": false,
 "webhooks": false,
 "excludeDeliveryCostsFromTierAssignment": false,
 "pointsDaysActiveCount": 30,
 "pointsYearsActiveCount": 0,
 "expirePointsNotificationDays": 10,
 "expireCouponsNotificationDays": 10,
 "expireLevelsNotificationDays": 10,
 "currency": "EUR",
 "timezone": "Europe/Warsaw",
 "programName": "Loyalty Program",
 "programPointsSingular": "Point",
 "programPointsPlural": "Points",
 "pointsDaysExpiryAfter": "after_x_days",
 "tierAssignType": "transactions",
 "levelDowngradeMode": "none",
 "levelDowngradeBase": "none",
 "preferredCommunicationMethod": "email",
 "accountActivationRequired": true,
 "marketingVendorsValue": "none",
 "pushySecretKey": "",
 "maxPointsRedeemed": "500",
 "programConditionsUrl": "",
 "programFaqUrl": "",
 "programUrl": "",
 "helpEmailAddress": "kkk",
 "uriWebhooks": "",
 "webhookHeaderName": "",
 "webhookHeaderValue": "",
 "accentColor": "",
 "cssTemplate": ""
}
}

Update system settings

To update system settings, you need to call the /api/<storeCode>/settings endpoint with the POST method.

Definition

POST /api/<storeCode>/settings

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to update settings of.

	settings[currency]

	request

	
	Currency: {“PLN”:”pln”,”USD”:”usd”,”EUR”:”eur”,”HKD”:”hkd”,”PESO”:”cop”,

	“INR”: “inr”,”VND”:”vnd”}

	settings[timezone]

	request

	Timezone

	settings[programName]

	request

	Program name

	settings[programConditionsUrl]

	request

	(optional) Program conditions URL

	settings[programFaqUrl]

	request

	(optional) Program FAQ URL

	settings[programUrl]

	request

	(optional) Program URL

	settings[programPointsSingular]

	request

	Points singular

	settings[programPointsPlural]

	request

	Points plural

	settings[helpEmailAddress]

	request

	(optional) Help e-mail

	settings[returns]

	request

	(optional) Returns

	settings[pointsDaysActiveCount]

	request

	Required when allTimeActive=false. Points will expire after [days]

	settings[pointsYearsActiveCount]

	request

	Req. when allTimeActive=false. Points will expire at Xth year end [years]

	settings[allTimeActive]

	request

	(optional) Is always active: true/false

	settings[pointsDaysLocked]

	request

	Points will be locked for N days. Required when allTimeNotLocked=false.

	settings[expireCouponsNotificationDays]

	request

	Days before expiring coupons to notify user

	settings[expireLevelsNotificationDays]

	request

	Days before level recalculation to notify user

	settings[expirePointsNotificationDays]

	request

	Days before expiring points to notify user

	settings[allTimeNotLocked]

	request

	(optional) Is always not locked: true/false

	settings[levelDowngradeMode]

	request

	Downgrade level based on specified mode: none, automatic, after_x_days

	settings[levelDowngradeDays]

	request

	Required when mode is “after_x_days”

	settings[levelDowngradeBase]

	request

	active_points | earned_points | earned_points_since_last_level_change
required when mode is “after_x_days”

	settings[levelResetPointsOnDowngrade]

	request

	(optional) Reset points option in the case of level downgrade based on
the active points. Possible values : true/false

	settings[accentColor]

	request

	Accent color

	settings[cssTemplate]

	request

	Css template

	settings[pushySecretKey]

	request

	Pushy API secret key

	settings[maxPointsRedeemed]

	request

	Cashback limit in points per day per customer

	settings[customersIdentificationPriority][][priority]

	request

	Priority to define matching transaction with customer

	settings[customersIdentificationPriority][][field]

	request

	Field to define matching transaction with customer

	settings[tierAssignType]

	request

	Levels will be calculated with: transactions/points

	settings[excludeDeliveryCostsFromTierAssignment]

	request

	(optional) Delivery costs will not generate points: true/false

	settings[excludedDeliverySKUs][]

	request

	Required when DeliveryCostsFromTierAssignment=true

	settings[excludedLevelSKUs][]

	request

	(optional) SKUs excluded from levels …

	settings[excludedLevelCategories][]

	request

	(optional) Categories excluded from levels …

	settings[logo]

	request

	Absolute path to the photo

	settings[accountActivationRequired]

	request

	Whether to require activation for new customer accounts.

	settings[preferredCommunicationMethod]

	request

	Choose preferred method of communication with the customers.
Possible values ‘email’ or ‘sms’.

	settings[marketingVendorsValue]

	request

	(optional) Choose marketing automation integration.
Possible values ‘none’ or ‘sales_manago’

	settings[sales_manago][api_url]

	request

	(optional) Required if Sales Manago integration enabled.

	settings[sales_manago][api_key]

	request

	(optional) Required if Sales Manago integration enabled.

	settings[sales_manago][api_secret]

	request

	(optional) Required if Sales Manago integration enabled.

	settings[sales_manago][customer_id]

	request

	(optional) Required if Sales Manago integration enabled.

	settings[sales_manago][email]

	request

	(optional) Required if Sales Manago integration enabled.

	settings[webhooks]

	request

	(optional) To enable/disable webhooks. Possible values : true/false

	settings[uriWebhooks]

	request

	(optional) URL where the webhooks will be sent

	settings[webhookHeaderName]

	request

	Request header name

	settings[webhookHeaderValue]

	request

	Request header value

Example

curl http://localhost:8181/api/DEFAULT/settings \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "settings[currency]=PLN" \
 -d "settings[timezone]=Europe/Warsaw" \
 -d "settings[programName]=Loyalty+Program" \
 -d "settings[programPointsSingular]=point" \
 -d "settings[programPointsPlural]=points" \
 -d "settings[returns]=0&settings[allTimeActive]=1" \
 -d "settings[customersIdentificationPriority][0][priority]=1" \
 -d "settings[customersIdentificationPriority][0][field]=email" \
 -d "settings[tierAssignType]=transactions" \
 -d "settings[excludeDeliveryCostsFromTierAssignment]=0"

Example Response

STATUS: 500 Internal Server Error

{
 "error": {
 "code": 500,
 "message": "Internal Server Error"
 }
}

Get lists of choices for specific select fields

To return a list of available choices for some specific fields, you need to call the /api/<storeCode>/settings/choices/<type> endpoint with the GET method.

Definition

To see a list of choices for a specific field <type>, use the method below:

GET /api/<storeCode>/settings/choices/<type>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get settings of.

	<type>

	query

	Allowed types: timezone, language, country, availableFrontendTranslations,
earningRuleLimitPeriod

Example

To see a list of language translations, use the method below:

curl http://localhost:8181/api/DEFAULT/settings/choices/language \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "choices": {
 "Abkhazian": "ab",
 "Achinese": "ace",
 "Angika": "anp",
 "Ao Naga": "njo",
 "Arabic": "ar",
 "Aromanian": "rup",
 "Brazilian Portuguese": "pt_BR",
 "Breton": "br",
 "British English": "en_GB",
 "Buginese": "bug",
 "Bulgarian": "bg",
 "Bulu": "bum",
 "Buriat": "bua",
 "Burmese": "my",
 "Caddo": "cad",
 "Cajun French": "frc",
 "Canadian English": "en_CA",
 "Canadian French": "fr_CA",
 "Cantonese": "yue",
 (...)
 "Capiznon": "cps",
 "Zaza": "zza",
 "Zeelandic": "zea",
 "Zenaga": "zen",
 "Zhuang": "za",
 "Zoroastrian Dari": "gbz",
 "Zulu": "zu",
 "Zuni": "zun"
 }
}

Get a list of available message templates

To retrieve a complete list of available message templates, you need to call the /api/<storeCode>/message endpoint with the GET method.

Definition

GET /api/<storeCode>/message

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get message templates of.

	page

	query

	(optional) Start from page, by default 1

	perPage

	query

	(optional) Number of items to display per page,
by default = 10

	sort

	query

	(optional) Sort by column name

	direction

	query

	(optional) Direction of sorting [ASC, DESC],
by default = ASC

Example

curl http://localhost:8181/api/DEFAULT/message \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "messages": [
 {
 "id": "c5261111-0344-4661-9b51-b0733011b52f",
 "channel": "sms",
 "subject": "",
 "content": "New transaction matched {{ first_name }} {{ last_name }}",
 "enabled": false,
 "updatedAt": "2020-09-07T15:56:00+02:00",
 "event": "oloy.transaction.labels_were_appended",
 "target": "customer"
 },
 {
 "id": "67b4a4bc-b65a-42df-b2f3-d66c7e140ddd",
 "channel": "sms",
 "subject": "",
 "content": "You have achieved new level",
 "enabled": false,
 "updatedAt": "2020-09-07T15:56:00+02:00",
 "event": "oloy.customer.level_changed_automatically",
 "target": "customer"
 },
 {
 "id": "3fb108c9-00f4-482a-89c6-f1e069574073",
 "channel": "sms",
 "subject": "",
 "content": "You have bought a new reward",
 "enabled": false,
 "updatedAt": "2020-09-07T15:56:00+02:00",
 "event": "oloy.campaign.customer_bought_campaign",
 "target": "customer"
 },
 {
 "id": "9cbdf804-2724-4319-84e7-c8dbe7225149",
 "channel": "email",
 "subject": "New transaction labels",
 "content": "New transaction labels {{ first_name }} {{ last_name }}",
 "enabled": true,
 "updatedAt": "2020-09-07T15:56:00+02:00",
 "event": "oloy.transaction.labels_were_appended",
 "target": "customer"
 },
 {
 "id": "74236215-3bc7-4f8b-9f3a-ef23a7103307",
 "channel": "email",
 "subject": "Confirm your email change",
 "content": "Confirm your email change in {{ program_name }} (no. {{ code_number }}): {{ code }}",
 "enabled": true,
 "updatedAt": "2020-09-07T15:56:00+02:00",
 "event": "oloy.customer.email_was_changed",
 "target": "customer"
 },
 {
 "id": "3b6915cc-d960-4c6b-a65f-84df1fa3fc6b",
 "channel": "email",
 "subject": "Confirm your phone number change",
 "content": "Confirm your phone change in {{ program_name }} (no. {{ code_number }}): {{ code }}",
 "enabled": true,
 "updatedAt": "2020-09-07T15:56:00+02:00",
 "event": "oloy.customer.phone_number_was_changed",
 "target": "customer"
 }
],
 "total": 20
}

Get details of a message template

To retrieve details of a particular message template, you need to call the /api/<storeCode>/message/<messageId> endpoint with the GET method.

Definition

GET /api/<storeCode>/message/<messageId>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the message template belongs to.

	<messageId>

	query

	Message template’s ID

Example

To see the details of a message template with messageId = c60f1033-b1d0-4033-b9fe-7a3c230c4479, use the method below:

curl http://localhost:8181/api/DEFAULT/message/c60f1033-b1d0-4033-b9fe-7a3c230c4479 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "message": {
 "id": "c60f1033-b1d0-4033-b9fe-7a3c230c4479",
 "channel": "email",
 "target": "customer",
 "event": "oloy.account.available_points_amount_changed",
 "subject": "Your balance changed",
 "content": "Email content",
 "enabled": true,
 "updatedAt": "2018-02-19T09:45:00+0100"
 }
}

Update message template’s details

To update details of a message template, you need to call the /api/<storeCode>/message/<messageId> endpoint with the PUT method.

Definition

PUT /api/<storeCode>/message/<messageId>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the message template belongs to.

	<messageId>

	query

	Message template’s ID

	message[channel]

	request

	Channel: sms, email or push

	message[target]

	request

	Target: customer or admin

	message[event]

	request

	Event triggering the message.
See Get message events below.

	message[subject]

	request

	Message subject

	message[content]

	request

	Message content

	message[enabled]

	request

	If the messages generated from this template
should be sent or not.

Example

curl http://localhost:8181/api/DEFAULT/message/f4f0e1f9-3677-4bdb-9685-416a961bc319 \
 -X "PUT" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "message[key]=oloy.account.available_points_amount_changed" \
 -d "message[channel]=sms" \
 -d "message[target]=customer" \
 -d "message[subject]=Your+balance+changed" \
 -d "message[content]=test" \
 -d "message[enabled]=1"

Example Response

STATUS: 200 OK

{
 "id": "f4f0e1f9-3677-4bdb-9685-416a961bc319"
}

Activate a message

To enable sending a message, you need to call the /api/<storeCode>/message/<messageId>/activate endpoint with the POST method.

Definition

POST /api/<storeCode>/message/<messageId>/activate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the message template belongs to.

	<messageId>

	query

	Message template’s ID

Example

curl http://localhost:8181/api/DEFAULT/message/f4f0e1f9-3677-4bdb-9685-416a961bc319/activate \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "id": "f4f0e1f9-3677-4bdb-9685-416a961bc319"
}

Deactivate a message

To disable sending a message, you need to call the /api/<storeCode>/message/<messageId>/deactivate endpoint with the POST method.

Definition

POST /api/<storeCode>/message/<messageId>/deactivate

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store the message template belongs to.

	<messageId>

	query

	Message template’s ID

Example

curl http://localhost:8181/api/DEFAULT/message/f4f0e1f9-3677-4bdb-9685-416a961bc319/deactivate \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "id": "f4f0e1f9-3677-4bdb-9685-416a961bc319"
}

Create a new message template

To create a message template, you need to call the /api/<storeCode>/message endpoint with the POST method.

You can create only one message template addressed to a given target, for a given event, per channel.

Definition

POST /api/<storeCode>/message

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to create message template in.

	message[channel]

	request

	Channel: sms, email or push

	message[target]

	request

	Target: customer or admin

	message[event]

	request

	Event triggering the message.
See Get message events below.

	message[subject]

	request

	Message subject

	message[content]

	request

	Message content

	message[enabled]

	request

	If the messages generated from this template
should be sent or not.

Example

curl http://localhost:8181/api/DEFAULT/message \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "message[key]=oloy.account.available_points_amount_changed" \
 -d "message[channel]=sms" \
 -d "message[target]=customer" \
 -d "message[subject]=Your+balance+changed" \
 -d "message[content]=test" \
 -d "message[enabled]=1"

Example Response

STATUS: 200 OK

{
 "id": "c4f0e1f9-d33a-4b3b-9a4a-416a961bc319"
}

Get message events

To retrieve a list of events a message can be triggered upon, you need to call the /api/message/events endpoint with the GET method.

The list contains the form values, their human-readable labels and a list of snippets available to use in a template.

Definition

GET /api/message/events

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

Example

curl http://localhost:8181/api/message/events \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "events": [
 {
 "value": "oloy.account.available_points_amount_changed",
 "label": "Earned points",
 "snippets": [
 "{{ program_name }}",
 "{{ customer_url }} ",
 "{{ added_points_amount }} ",
 "{{ active_points_amount }} "
]
 },
 {
 "value": "oloy.customer.level_changed_automatically",
 "label": "Gained new level",
 "snippets": [
 "{{ program_name }}",
 "{{ customer_url }}",
 "{{ level_name }}",
 "{{ level_discount }}"
]
 },
 {
 "value": "oloy.campaign.has_become_available",
 "label": "Campaign has become available",
 "snippets": [
 "{{ program_name }}",
 "{{ customer_url }}",
 "{{ title }}",
 "{{ message }}"
]
 }
]
}

Return all public system settings

To retrieve a list of all public system settings, you need to call the /api/<storeCode>/settings/public endpoint with the GET method.

Definition

GET /api/<storeCode>/settings/public

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get settings of.

Example

curl http://localhost:8181/api/DEFAULT/settings/public \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "settings": {
 "allowCustomersProfileEdits": false
 }
}

Remove logo

To remove the site logo, you need to call the /api/<storeCode>/settings/logo endpoint with the DELETE method.

Definition

DELETE /api/<storeCode>/settings/logo

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to delete logo of.

Example

curl http://localhost:8181/api/DEFAULT/settings/logo \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

(no content)

Get logo

To retrieve the logo, you need to call the /api/<storeCode>/settings/logo endpoint with the GET method.

Definition

GET /api/<storeCode>/settings/logo

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get logo of.

Example

curl http://localhost:8181/api/DEFAULT/settings/logo \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

<svg version="1.1" id="openLoyaltyLogo" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 200 70" style="enable-background:new 0 0 200 70;" xml:space="preserve"><style type="text/css"> .st0{fill:#FFFFFF;} .st1{opacity:0.7;}</style><g> <path class="st0" d="M109.2,27.4c3.9,0,7,3.2,7,7c0,3.9-3.2,7-7,7c-3.9,0-7-3.2-7-7S105.3,27.4,109.2,27.4 M109.2,26.4 c-4.5,0-8.1,3.6-8.1,8.1s3.6,8.1,8.1,8.1s8.1-3.6,8.1-8.1C117.3,30,113.6,26.4,109.2,26.4"></path> <path class="st0" d="M55.4,31.2c0,1.7-0.6,3-1.7,3.9C52.6,36,51,36.4,49,36.4h-1.7v6h-2.6v-16h4.6c2,0,3.5,0.4,4.5,1.2 C54.9,28.4,55.4,29.6,55.4,31.2 M47.4,34.2h1.4c1.4,0,2.3-0.2,3-0.7c0.6-0.5,0.9-1.2,0.9-2.2c0-0.9-0.3-1.6-0.8-2.1 c-0.6-0.5-1.4-0.7-2.6-0.7h-1.8v5.7C47.5,34.2,47.4,34.2,47.4,34.2z"></path> <polygon class="st0" points="67.8,42.5 58.7,42.5 58.7,26.4 67.8,26.4 67.8,28.6 61.3,28.6 61.3,33 67.4,33 67.4,35.2 61.3,35.2 61.3,40.2 67.8,40.2 "></polygon> <path class="st0" d="M85.4,42.5h-3.2l-7.9-12.9h-0.1l0.1,0.7c0.1,1.4,0.2,2.6,0.2,3.8v8.4h-2.4V26.4h3.2l7.9,12.8h0.1 c0-0.2,0-0.8-0.1-1.8c0-1.1-0.1-1.9-0.1-2.5v-8.5h2.4L85.4,42.5L85.4,42.5z"></path> <polygon class="st0" points="92,42.5 92,26.4 93.1,26.4 93.1,41.4 100.8,41.4 100.8,42.5 "></polygon> <polygon class="st0" points="124.5,35.2 129.2,26.4 130.5,26.4 125.1,36.3 125.1,42.5 123.9,42.5 123.9,36.4 118.5,26.4 119.8,26.4 "></polygon> <path class="st0" d="M140.5,36.8H134l-2.3,5.7h-1.2l6.5-16.2h0.7l6.4,16.2h-1.3L140.5,36.8z M134.4,35.8h5.8L138,30 c-0.2-0.5-0.4-1.1-0.7-1.9c-0.2,0.7-0.4,1.3-0.7,1.9L134.4,35.8z"></path> <polygon class="st0" points="147.6,42.5 147.6,26.4 148.8,26.4 148.8,41.4 156.5,41.4 156.5,42.5 "></polygon> <polygon class="st0" points="162.1,42.5 161,42.5 161,27.4 155.7,27.4 155.7,26.4 167.3,26.4 167.3,27.4 162.1,27.4 "></polygon> <polygon class="st0" points="174.8,35.2 179.5,26.4 180.7,26.4 175.3,36.3 175.3,42.5 174.2,42.5 174.2,36.4 168.8,26.4 170.1,26.4 "></polygon> <g class="st1"> <circle class="st0" cx="30.3" cy="33" r="1.7"></circle> </g> <g class="st1"> <path class="st0" d="M22.6,42.2l1.3-2.2c-1.3-1.5-2.1-3.5-2.1-5.6c0-4.7,3.9-8.6,8.6-8.6s8.6,3.9,8.6,8.6c0,2.2-0.8,4.1-2.1,5.6 l1.3,2.2c2-2,3.3-4.8,3.3-7.8c0-6.1-4.9-11-11-11s-11,4.9-11,11C19.3,37.4,20.5,40.2,22.6,42.2z"></path> </g> <g class="st1"> <polygon class="st0" points="35.6,46.6 30.8,38.2 29.8,38.2 25,46.6 22.9,45.4 28.4,35.8 32.2,35.8 37.7,45.4 "></polygon> </g></g></svg>

Add logo

To add the site logo, you need to call the /api/<storeCode>/settings/logo endpoint with the POST method.

Definition

POST /api/<storeCode>/settings/logo

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to add logo to.

	photo[file]

	request

	Path of logo file

Example

curl http://localhost:8181/api/DEFAULT/settings/logo \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "photo[file]=C:\fakepath\Photo.png"

Example Response

STATUS: 200 OK

(no content)

Get a small logo

To retrieve a small logo, you need to call the /api/<storeCode>/settings/small-logo endpoint with the GET method.

Definition

GET /api/<storeCode>/settings/small-logo

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get small logo of.

Example

curl http://localhost:8181/api/DEFAULT/settings/small-logo \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

<svg version="1.1" id="openLoyaltyLogo" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 200 70" style="enable-background:new 0 0 200 70;" xml:space="preserve"><style type="text/css"> .st0{fill:#FFFFFF;} .st1{opacity:0.7;}</style><g> <path class="st0" d="M109.2,27.4c3.9,0,7,3.2,7,7c0,3.9-3.2,7-7,7c-3.9,0-7-3.2-7-7S105.3,27.4,109.2,27.4 M109.2,26.4 c-4.5,0-8.1,3.6-8.1,8.1s3.6,8.1,8.1,8.1s8.1-3.6,8.1-8.1C117.3,30,113.6,26.4,109.2,26.4"></path> <path class="st0" d="M55.4,31.2c0,1.7-0.6,3-1.7,3.9C52.6,36,51,36.4,49,36.4h-1.7v6h-2.6v-16h4.6c2,0,3.5,0.4,4.5,1.2 C54.9,28.4,55.4,29.6,55.4,31.2 M47.4,34.2h1.4c1.4,0,2.3-0.2,3-0.7c0.6-0.5,0.9-1.2,0.9-2.2c0-0.9-0.3-1.6-0.8-2.1 c-0.6-0.5-1.4-0.7-2.6-0.7h-1.8v5.7C47.5,34.2,47.4,34.2,47.4,34.2z"></path> <polygon class="st0" points="67.8,42.5 58.7,42.5 58.7,26.4 67.8,26.4 67.8,28.6 61.3,28.6 61.3,33 67.4,33 67.4,35.2 61.3,35.2 61.3,40.2 67.8,40.2 "></polygon> <path class="st0" d="M85.4,42.5h-3.2l-7.9-12.9h-0.1l0.1,0.7c0.1,1.4,0.2,2.6,0.2,3.8v8.4h-2.4V26.4h3.2l7.9,12.8h0.1 c0-0.2,0-0.8-0.1-1.8c0-1.1-0.1-1.9-0.1-2.5v-8.5h2.4L85.4,42.5L85.4,42.5z"></path> <polygon class="st0" points="92,42.5 92,26.4 93.1,26.4 93.1,41.4 100.8,41.4 100.8,42.5 "></polygon> <polygon class="st0" points="124.5,35.2 129.2,26.4 130.5,26.4 125.1,36.3 125.1,42.5 123.9,42.5 123.9,36.4 118.5,26.4 119.8,26.4 "></polygon> <path class="st0" d="M140.5,36.8H134l-2.3,5.7h-1.2l6.5-16.2h0.7l6.4,16.2h-1.3L140.5,36.8z M134.4,35.8h5.8L138,30 c-0.2-0.5-0.4-1.1-0.7-1.9c-0.2,0.7-0.4,1.3-0.7,1.9L134.4,35.8z"></path> <polygon class="st0" points="147.6,42.5 147.6,26.4 148.8,26.4 148.8,41.4 156.5,41.4 156.5,42.5 "></polygon> <polygon class="st0" points="162.1,42.5 161,42.5 161,27.4 155.7,27.4 155.7,26.4 167.3,26.4 167.3,27.4 162.1,27.4 "></polygon> <polygon class="st0" points="174.8,35.2 179.5,26.4 180.7,26.4 175.3,36.3 175.3,42.5 174.2,42.5 174.2,36.4 168.8,26.4 170.1,26.4 "></polygon> <g class="st1"> <circle class="st0" cx="30.3" cy="33" r="1.7"></circle> </g> <g class="st1"> <path class="st0" d="M22.6,42.2l1.3-2.2c-1.3-1.5-2.1-3.5-2.1-5.6c0-4.7,3.9-8.6,8.6-8.6s8.6,3.9,8.6,8.6c0,2.2-0.8,4.1-2.1,5.6 l1.3,2.2c2-2,3.3-4.8,3.3-7.8c0-6.1-4.9-11-11-11s-11,4.9-11,11C19.3,37.4,20.5,40.2,22.6,42.2z"></path> </g> <g class="st1"> <polygon class="st0" points="35.6,46.6 30.8,38.2 29.8,38.2 25,46.6 22.9,45.4 28.4,35.8 32.2,35.8 37.7,45.4 "></polygon> </g></g></svg>

Get a named photo

To retrieve a named photo, you need to call the /api/<storeCode>/settings/photo/<name> endpoint with the GET method.

Definition

GET /api/<storeCode>/settings/photo/<name>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get photo of.

	<name>

	path

	(required) photo name (logo, small-logo, hero-image, admin-cockpit-logo,
client-cockpit-logo-big, client-cockpit-logo-small, client-cockpit-hero-image)

Example

curl http://localhost:8181/api/DEFAULT/settings/photo/small-logo \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

<svg version="1.1" id="openLoyaltyLogo" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 200 70" style="enable-background:new 0 0 200 70;" xml:space="preserve"><style type="text/css"> .st0{fill:#FFFFFF;} .st1{opacity:0.7;}</style><g> <path class="st0" d="M109.2,27.4c3.9,0,7,3.2,7,7c0,3.9-3.2,7-7,7c-3.9,0-7-3.2-7-7S105.3,27.4,109.2,27.4 M109.2,26.4 c-4.5,0-8.1,3.6-8.1,8.1s3.6,8.1,8.1,8.1s8.1-3.6,8.1-8.1C117.3,30,113.6,26.4,109.2,26.4"></path> <path class="st0" d="M55.4,31.2c0,1.7-0.6,3-1.7,3.9C52.6,36,51,36.4,49,36.4h-1.7v6h-2.6v-16h4.6c2,0,3.5,0.4,4.5,1.2 C54.9,28.4,55.4,29.6,55.4,31.2 M47.4,34.2h1.4c1.4,0,2.3-0.2,3-0.7c0.6-0.5,0.9-1.2,0.9-2.2c0-0.9-0.3-1.6-0.8-2.1 c-0.6-0.5-1.4-0.7-2.6-0.7h-1.8v5.7C47.5,34.2,47.4,34.2,47.4,34.2z"></path> <polygon class="st0" points="67.8,42.5 58.7,42.5 58.7,26.4 67.8,26.4 67.8,28.6 61.3,28.6 61.3,33 67.4,33 67.4,35.2 61.3,35.2 61.3,40.2 67.8,40.2 "></polygon> <path class="st0" d="M85.4,42.5h-3.2l-7.9-12.9h-0.1l0.1,0.7c0.1,1.4,0.2,2.6,0.2,3.8v8.4h-2.4V26.4h3.2l7.9,12.8h0.1 c0-0.2,0-0.8-0.1-1.8c0-1.1-0.1-1.9-0.1-2.5v-8.5h2.4L85.4,42.5L85.4,42.5z"></path> <polygon class="st0" points="92,42.5 92,26.4 93.1,26.4 93.1,41.4 100.8,41.4 100.8,42.5 "></polygon> <polygon class="st0" points="124.5,35.2 129.2,26.4 130.5,26.4 125.1,36.3 125.1,42.5 123.9,42.5 123.9,36.4 118.5,26.4 119.8,26.4 "></polygon> <path class="st0" d="M140.5,36.8H134l-2.3,5.7h-1.2l6.5-16.2h0.7l6.4,16.2h-1.3L140.5,36.8z M134.4,35.8h5.8L138,30 c-0.2-0.5-0.4-1.1-0.7-1.9c-0.2,0.7-0.4,1.3-0.7,1.9L134.4,35.8z"></path> <polygon class="st0" points="147.6,42.5 147.6,26.4 148.8,26.4 148.8,41.4 156.5,41.4 156.5,42.5 "></polygon> <polygon class="st0" points="162.1,42.5 161,42.5 161,27.4 155.7,27.4 155.7,26.4 167.3,26.4 167.3,27.4 162.1,27.4 "></polygon> <polygon class="st0" points="174.8,35.2 179.5,26.4 180.7,26.4 175.3,36.3 175.3,42.5 174.2,42.5 174.2,36.4 168.8,26.4 170.1,26.4 "></polygon> <g class="st1"> <circle class="st0" cx="30.3" cy="33" r="1.7"></circle> </g> <g class="st1"> <path class="st0" d="M22.6,42.2l1.3-2.2c-1.3-1.5-2.1-3.5-2.1-5.6c0-4.7,3.9-8.6,8.6-8.6s8.6,3.9,8.6,8.6c0,2.2-0.8,4.1-2.1,5.6 l1.3,2.2c2-2,3.3-4.8,3.3-7.8c0-6.1-4.9-11-11-11s-11,4.9-11,11C19.3,37.4,20.5,40.2,22.6,42.2z"></path> </g> <g class="st1"> <polygon class="st0" points="35.6,46.6 30.8,38.2 29.8,38.2 25,46.6 22.9,45.4 28.4,35.8 32.2,35.8 37.7,45.4 "></polygon> </g></g></svg>

Add a named photo

To add a named photo, you need to call the /api/<storeCode>/settings/photo/<name> endpoint with the POST method.

Definition

POST /api/<storeCode>/settings/photo/<name>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to add photo to.

	photo[file]

	request

	Path of logo file

	<name>

	path

	(required) photo name (logo, small-logo, hero-image, admin-cockpit-logo,
client-cockpit-logo-big, client-cockpit-logo-small, client-cockpit-hero-image)

Example

curl http://localhost:8181/api/DEFAULT/settings/photo/small-logo \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "photo[file]=C:\fakepath\Photo.png"

Example Response

STATUS: 200 OK

(no content)

Remove a named photo

To remove a named photo, you need to call the /api/<storeCode>/settings/photo/<name> endpoint with the DELETE method.

Definition

DELETE /api/<storeCode>/settings/photo/<name>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to delete photo of.

	<name>

	path

	(required) photo name (logo, small-logo, hero-image, admin-cockpit-logo,
client-cockpit-logo-big, client-cockpit-logo-small, client-cockpit-hero-image)

Example

curl http://localhost:8181/api/DEFAULT/settings/photo/small-logo \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

(no content)

Get the hero image

To retrieve the client cockpit hero image, you need to call the /api/<storeCode>/settings/hero-image endpoint with the GET method.

Definition

GET /api/<storeCode>/settings/hero-image

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get hero image of.

Example

curl http://localhost:8181/api/DEFAULT/settings/hero-image \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

<svg version="1.1" id="openLoyaltyLogo" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 200 70" style="enable-background:new 0 0 200 70;" xml:space="preserve"><style type="text/css"> .st0{fill:#FFFFFF;} .st1{opacity:0.7;}</style><g> <path class="st0" d="M109.2,27.4c3.9,0,7,3.2,7,7c0,3.9-3.2,7-7,7c-3.9,0-7-3.2-7-7S105.3,27.4,109.2,27.4 M109.2,26.4 c-4.5,0-8.1,3.6-8.1,8.1s3.6,8.1,8.1,8.1s8.1-3.6,8.1-8.1C117.3,30,113.6,26.4,109.2,26.4"></path> <path class="st0" d="M55.4,31.2c0,1.7-0.6,3-1.7,3.9C52.6,36,51,36.4,49,36.4h-1.7v6h-2.6v-16h4.6c2,0,3.5,0.4,4.5,1.2 C54.9,28.4,55.4,29.6,55.4,31.2 M47.4,34.2h1.4c1.4,0,2.3-0.2,3-0.7c0.6-0.5,0.9-1.2,0.9-2.2c0-0.9-0.3-1.6-0.8-2.1 c-0.6-0.5-1.4-0.7-2.6-0.7h-1.8v5.7C47.5,34.2,47.4,34.2,47.4,34.2z"></path> <polygon class="st0" points="67.8,42.5 58.7,42.5 58.7,26.4 67.8,26.4 67.8,28.6 61.3,28.6 61.3,33 67.4,33 67.4,35.2 61.3,35.2 61.3,40.2 67.8,40.2 "></polygon> <path class="st0" d="M85.4,42.5h-3.2l-7.9-12.9h-0.1l0.1,0.7c0.1,1.4,0.2,2.6,0.2,3.8v8.4h-2.4V26.4h3.2l7.9,12.8h0.1 c0-0.2,0-0.8-0.1-1.8c0-1.1-0.1-1.9-0.1-2.5v-8.5h2.4L85.4,42.5L85.4,42.5z"></path> <polygon class="st0" points="92,42.5 92,26.4 93.1,26.4 93.1,41.4 100.8,41.4 100.8,42.5 "></polygon> <polygon class="st0" points="124.5,35.2 129.2,26.4 130.5,26.4 125.1,36.3 125.1,42.5 123.9,42.5 123.9,36.4 118.5,26.4 119.8,26.4 "></polygon> <path class="st0" d="M140.5,36.8H134l-2.3,5.7h-1.2l6.5-16.2h0.7l6.4,16.2h-1.3L140.5,36.8z M134.4,35.8h5.8L138,30 c-0.2-0.5-0.4-1.1-0.7-1.9c-0.2,0.7-0.4,1.3-0.7,1.9L134.4,35.8z"></path> <polygon class="st0" points="147.6,42.5 147.6,26.4 148.8,26.4 148.8,41.4 156.5,41.4 156.5,42.5 "></polygon> <polygon class="st0" points="162.1,42.5 161,42.5 161,27.4 155.7,27.4 155.7,26.4 167.3,26.4 167.3,27.4 162.1,27.4 "></polygon> <polygon class="st0" points="174.8,35.2 179.5,26.4 180.7,26.4 175.3,36.3 175.3,42.5 174.2,42.5 174.2,36.4 168.8,26.4 170.1,26.4 "></polygon> <g class="st1"> <circle class="st0" cx="30.3" cy="33" r="1.7"></circle> </g> <g class="st1"> <path class="st0" d="M22.6,42.2l1.3-2.2c-1.3-1.5-2.1-3.5-2.1-5.6c0-4.7,3.9-8.6,8.6-8.6s8.6,3.9,8.6,8.6c0,2.2-0.8,4.1-2.1,5.6 l1.3,2.2c2-2,3.3-4.8,3.3-7.8c0-6.1-4.9-11-11-11s-11,4.9-11,11C19.3,37.4,20.5,40.2,22.6,42.2z"></path> </g> <g class="st1"> <polygon class="st0" points="35.6,46.6 30.8,38.2 29.8,38.2 25,46.6 22.9,45.4 28.4,35.8 32.2,35.8 37.7,45.4 "></polygon> </g></g></svg>

Remove the hero image

To remove the client cockpit hero image, you need to call the /api/<storeCode>/settings/hero-image endpoint with the DELETE method.

Definition

DELETE /api/<storeCode>/settings/hero-image

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to delete hero image of.

Example

curl http://localhost:8181/api/DEFAULT/settings/hero-image \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

(no content)

Get terms and conditions file

To retrieve a terms and conditions file, you need to call the /terms-conditions endpoint with the GET method.

Definition

GET /terms-conditions

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

Example

curl http://localhost:8181/terms-conditions

Example Response

STATUS: 200 OK

Add terms and conditions file

To add a terms and conditions file, you need to call the /api/<storeCode>/settings/conditions-file endpoint with the POST method.

Definition

POST /api/<storeCode>/settings/conditions-file

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to add terms and conditions file to.

	conditions[file]

	request

	Path of logo file

Example

curl http://localhost:8181/api/DEFAULT/settings/conditions-file \
 -X "POST" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..." \
 -d "conditions[file]=C:\fakepath\conditions.pdf"

Example Response

STATUS: 200 OK

(no content)

Remove a conditions file

To remove a terms and conditions file, you need to call the /api/<storeCode>/settings/conditions-file endpoint with the DELETE method.

Definition

DELETE /api/<storeCode>/settings/conditions-file

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to delete terms and conditions of.

Example

curl http://localhost:8181/api/DEFAULT/settings/conditions-file \
 -X "DELETE" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

(no content)

Get current translations

To return current translations, you need to call the /api/translations endpoint with the GET method.

Definition

GET /api/translations

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

Example

curl http://localhost:8181/api/translations \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "global": {
 "configuration": "Configuration",
 "users": "Users",
 "cancel": "Cancel",
 "save": "Save",
 "yes": "Yes",
 "no": "No",
 # ...
 },
 "users": {
 # ...
 },
 # ...
 "Your password must be at least 8 characters long.": "Your password must be at least 8 characters long",
 "Your password must include both upper and lower case letters.": "Your password must include both upper and lower case letters",
 "Your password must include at least one number.": "Your password must include at least one number",
 "Your password must contain at least one special character.": "Your password must contain at least one special character",
 "Your password must include at least one letter.": "Your password must include at least one letter"
}

Get custom css

These endpoints will allow you to provide a customized CSS file which can be used in frontend application.

Definition

GET /api/<storeCode>/settings/css

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to edit custom css.

Example

curl http://localhost:8181/api/DEFAULT/settings/css \
 -X "GET" \
 -H "Accept: text/css"

Example Response

STATUS: 200 OK

.text { color: #123123; }

Return activation configuration and method

To check activation method, you need to call the /api/<storeCode>/settings/activation endpoint with the GET method.

Definition

GET /api/<storeCode>/settings/activation

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get activation method of.

Example

curl http://localhost:8181/api/DEFAULT/settings/activation \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "method": "sms",
 "required": true
}

Get the manifest file

To get the manifest file, you need to call the /api/<storeCode>/settings/manifest endpoint with the GET method.

Definition

GET /api/<storeCode>/settings/manifest

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get the manifest file.

Example

curl http://localhost:8181/api/DEFAULT/settings/manifest \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

{
 "name": "Loyalty Program",
 "short_name": "Loyalty Program",
 "icons": [
 {
 "src": "backend.openloyalty3.test.openloyalty.io/api/settings/small-logo",
 "sizes": "192x192",
 "type": "image/png"
 },
 {
 "src": "backend.openloyalty3.test.openloyalty.io/api/settings/logo",
 "sizes": "512x512",
 "type": "image/png"
 }
],
 "start_url": "/",
 "display": "standalone",
 "scope": "/",
 "background_color": "#FFFFFF",
 "theme_color": "#FFFFFF"
}

Utility API

These endpoints will allow you to see the CSVs in Open Loyalty.

Get CSV of customers assigned to a specific level

To retrieve a CSV of customers assigned to a level, you need to call the /api/<storeCode>/csv/level/<level> endpoint with the GET method.

Definition

GET /api/<storeCode>/csv/level/<level>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get CSV of customers.

	<level>

	query

	Level ID

Example

curl http://localhost:8181/api/DEFAULT/csv/level/000096cf-32a3-43bd-9034-4df343e5fd93 \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

"First name","Last name","E-mail address",Gender,Telephone,"Loyalty card number",Birthdate,"Created at","Legal agreement","Marketing agreement","Data processing agreement"
John,Doe,user@example.com,male,11111,,"1990-09-11 02:00:00","2016-08-08 10:53:14",,,
Jane,Doe,user-temp@example.com,male,111112222,0000,"1990-09-11 02:00:00","2016-08-08 10:53:14",,,
alina,test,qwe@test.pl,male,1212121212,,"2018-03-19 00:00:00","2018-02-19 14:24:18",1,,
Tomasz,Test7,tomasztest7@wp.pl,,,,,"2018-02-20 08:21:39",1,,
user,user,user@user.pl,male,123456789876543,,"2018-02-23 00:00:00","2018-02-23 13:29:11",1,,

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Get CSV of customers assigned to a specific segment

To retrieve a CSV of customers assigned to a segment, you need to call the /api/<storeCode>/csv/segment/<segment> endpoint with the GET method.

Definition

GET /api/<storeCode>/csv/segment/<segment>

	Parameter

	Parameter type

	Description

	Authorization

	header

	Token received during authentication

	<storeCode>

	query

	Code of the store to get CSV of customers.

	<segment>

	query

	Segment ID

Example

curl http://localhost:8181/api/DEFAULT/csv/segment/63afec60-5e74-43fc-a5e1-81bbc03421ca \
 -X "GET" \
 -H "Accept: application/json" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6..."

Example Response

STATUS: 200 OK

"First name","Last name","E-mail address",Gender,Telephone,"Loyalty card number",Birthdate,"Created at","Legal agreement","Marketing agreement","Data processing agreement"

Note

The eyJhbGciOiJSUzI1NiIsInR5cCI6… authorization token is an example value.
Your value may be different. Read more about Authorization here.

Webhooks

Available webhooks

onCustomerUpdate

{
 "type": "customer.updated",
 "data": {
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff"
 }
}

onCustomerRegistered

{
 "type": "customer.registered",
 "data": {
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff",
 "data": {
 "firstName": "Jon",
 "lastName": "Doe",
 "gender": "not_disclosed",
 "email": "jdoe@example.com",
 "phone": 123456789,
 "levelAchievementDate": "2019-08-09T14:08:28+02:00",
 "createdAt": 1563363348,
 "address": {
 "street": "Streets",
 "address1": "12",
 "address2": "3",
 "postal": "41-222",
 "city": "Glasgow",
 "province": "Glasgow",
 "country": "GB"
 },
 "company": {
 "name": "Hydropol",
 "nip": "123"
 },
 "loyaltyCardNumber": "444555666",
 "labels": [
 {
 "key": "labels_key",
 "value": "5"
 }
],
 "agreement1": true,
 "agreement2": false,
 "agreement3": false,
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e50000",
 "posId": "00000000-0000-474c-1111-b0dd880c07e3",
 "sellerId": "00000000-0000-474c-b092-b0dd880c07e4"
 }
 }
}

onCustomerDeactivated

{
 "type": "customer.deactivated",
 "data": {
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff"
 }
}

onCustomerLevelChangedAutomatically

{
 "type": "customer.level_changed_automatically",
 "data": {
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff",
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e51111",
 "levelName": "level1",
 "levelMove": "up",
 "levelAchievementDate": "2019-08-09T14:08:28+02:00",
 }
}

onCustomerLevelChanged

{
 "type": "customer.level_changed",
 "data": {
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff",
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e50000",
 "levelName": "level0",
 "levelAchievementDate": "2019-08-09T14:08:28+02:00",
 }
}

onTransactionRegistered

{
 "type": "transaction.registered",
 "data": {
 "transactionId": "cb4cc2f7-d897-4fe0-b5a6-9b67a91c0729",
 "transactionData": {
 "documentType": "sell",
 "documentNumber": "80",
 "purchasePlace": null,
 "purchaseDate": "2019-08-09T14:08:28+02:00"
 },
 "customerData": {
 "name": "Jon Doe",
 "email": "jdoe@example.com",
 "phone": null,
 "loyaltyCardNumber": null,
 "nip": "123",
 "address": {
 "street": "Bridges",
 "address1": "12",
 "address2": “3”,
 "postal": "41-222",
 "city": "New york",
 "province": "NY",
 "country": "EN"
 }
 },
 "items": [
 {
 "sku": {
 "code": "sku1230"
 },
 "name": "product_name",
 "quantity": 1,
 "grossValue": 80,
 "category": "Women",
 "maker": "Exclusive",
 "labels": []
 }
],
 "posId": null
 }
}

onTransactionAssignedToCustomer

{
 "type": "transaction.assigned_to_customer",
 "data": {
 "transactionId": "cb4cc2f7-d897-4fe0-b5a6-9b67a91c0729",
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff",
 "grossValue": 80,
 }
}

onAccountAvailablePointsAmountChanged

{
 "type": "account.available_points_amount_changed",
 "data": {
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff",
 "amount": 125,
 "amount_change": 25,
 "amount_change_type": "add”
 }
}

onCampaignBought

{
 "type": "customer.bought_campaign",
 "createdAt": "2020-09-24T14:09:13+02:00",
 "data": {
 "storeCode": "DEFAULT",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "campaignId": "38e45c26-7c57-3962-9516-3704fa3eb776",
 "costInPoints": 1.0,
 "couponCode": "655"
 }
}

onExpiringPointsNotification

{
 "type": "account.expiring_points_notification"
 "createdAt": "2021-12-14T14:16:54+00:00",
 "data": {
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "customerEmail": "jdoe@example.com",
 "customerPhone": "+123456789",
 "customerLoyaltyCardNumber": "0000",
 "customerFirstName": "Jane",
 "customerLastName": "Doe",
 "points": 100.0,
 "pointsWillExpire": "2021-11-16T22:59:59+01:00",
 "storeCode": "DEFAULT"
 }
}

Architecture

Main concepts used in this project are

	CQRS [https://martinfowler.com/bliki/CQRS.html]

	DDD (Domain Driven Design)

	Event sourcing [https://martinfowler.com/eaaDev/EventSourcing.html]

Event sourcing is used in order to have full history of domain events in system. Specially useful for transactions.
Events are stored in database and read models are created and stored in elasticsearch for better performance.
Not all parts of system need to be written using event sourcing concept so e.g. campaign component is not using it.

Components

In order to fulfill Domain Driven Design requirements, whole domain related things were separated into bounded context - components.

Complete list of components:

	Account

	Audit

	Campaign

	Customer

	EarningRule

	Email

	Level

	Pos

	Segment

	Seller

	Transaction

Bundles

Whole domain is utilized in the bundles.

Complete list of bundles:

	AnalyticsBundle

	AuditBundle

	CampaignBundle

	EarningRuleBundle

	EmailBundle

	LevelBundle

	PaginationBundle

	PluginBundle

	PointsBundle

	PosBundle

	SegmentBundle

	SettingsBundle

	TransactionBundle

	UserBundle

	UtilityBundle

Infrastructure

Things that are not strict part of particular domain or are related to system infrastructure are defined in Infrastructure directory.
There are such things like Doctrine ORM mapping files, repositories, types and some system event listener.

Account component

Account component contains all information about points, points transfers and also it is responsible for adding, spending and expiring points.

System events dispatched by component

const AVAILABLE_POINTS_AMOUNT_CHANGED = 'oloy.account.available_points_amount_changed';
const ACCOUNT_CREATED = 'oloy.account.created';
const CUSTOM_EVENT_OCCURRED = 'oloy.account.custom_event_occurred';
const CUSTOM_EVENT_GEO_OCCURRED = 'oloy.account.custom_event_geo_occurred';
const CUSTOM_EVENT_QRCODE_OCCURRED = 'oloy.account.custom_event_qrcode_occurred';

Campaign Component

This component is responsible for campaigns management.

Customer component

Contains all information related to customer, his personal data, statistics, level assignment and much more.

System events dispatched by component

const CUSTOMER_REGISTERED = 'oloy.customer.registered';
const CUSTOMER_DEACTIVATED = 'oloy.customer.deactivated';
const CUSTOMER_ACTIVATED = 'oloy.customer.activated';
const CUSTOMER_UPDATED = 'oloy.customer.updated';
const CUSTOMER_AGREEMENTS_UPDATED = 'oloy.customer.agreements_updated';
const CUSTOMER_LOGGED_IN = 'oloy.customer.logged_in';
const CUSTOMER_REFERRAL = 'oloy.customer.referral';
const NEWSLETTER_SUBSCRIPTION = 'oloy.customer.newsletter_subscription';
const CUSTOMER_LEVEL_CHANGED_AUTOMATICALLY = 'oloy.customer.level_changed_automatically';
const CUSTOMER_LEVEL_CHANGED = 'oloy.customer.level_changed';

Segment component

Contains all information related to segment. It allows to manage existing segments and define set of rules.

System events dispatched by component

const CUSTOMER_ADDED_TO_SEGMENT = 'oloy.segment.customer_added_to_segment';
const CUSTOMER_REMOVED_FROM_SEGMENT = 'oloy.segment.customer_removed_from_segment';
const SEGMENT_CHANGED = 'oloy.segment.changed';

Segment component

Contains all information related to transaction. Registering transaction and assign it to customer.

System events dispatched by component

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

	4.x

	3.x

	2.x

	1.x

1.x

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

[1.4.0] 2017-11-07

Added

	CLI command to restore read model using event store

Fixed

	AC/POSC fixed transaction id

	AC/POSC show points for each transaction

	AC clear fields after changing event type

	POSC fixed missing days from last order

	CC fixed cancel button

[1.3.1] 2017-10-23

Added

	Added change log file

Changed

	API Documentation

	Changed guide link in the admin cockpit

Fixed

	Reload application after language change

	Fixed renaming translation name

[1.3.0] 2017-10-09

Changed

	Added new endpoints to the API documentation

Fixed

	Fixed PHPUnit configuration

	Changed label for Postgres from latest to version 9

[1.2.1] 2017-09-28

Added

	Added API documentation

Fixed

	Fixed wrong marketing agreement label

	Fixed table width on the transaction details

	View level & segment names instead of ID in the reward campaign view

	Show newly added language in the settings

[1.2.0] 2017-09-08

Changed

	Moved code to the vendor

Fixed

	Fixed customer activation link

	Fixed variables in the e-mail templates

	Fixed link to the page “See rewards you have already redeemed”

[1.1.0] 2017-07-21

Changed

	Allow decimal numbers for point value field in the general spending rule

	Change default language from PL to EN

Fixed

	Fixed loader look

2.x

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

[2.10.0] 24-09-2018

Added

	your points will expire soon (web hook)

	you level will expire soon (web hook)

	new level calculation mode

	information about bought products in transfer points to avoid uneccesary calls

	new logos in Settings -> Configuration

	polish translation for backend validation

	generating a manifest file from Settings -> Configuration

	new web hook when a customer has been deactivated

	added level name to the onCustomerLevelChangedAutomatically (web hook)

	filter to /api/points/transfer to filter only active and expired points

	filter to /api/points/transfer to filter points by expiration date

	points transfer between customers (new feature)

	brand icon for Reward Campaigns

	categories for Reward Campaigns (new feature)

	a new flag, feature for Reward Campaigns

	coupon expiration (new feature)

	your points will expire soon (web hook)

	Earning Rule based on customer localization (new feature)

	information how many points you need to earn to stay in the same level

	added flag “public” to the Reward Campaign

	buying many coupons at once (new feature)

	an administrator can buy a campaign as a customer with or without using customer points (new feature)

	resetting level after a certain time (new feature)

	cancel coupon when a transaction has been fully returned (new feature)

	using many coupons at once (new feature)

	custom static segments (new feature)

Changed

	import transfer points using customer email/phone number/loyalty card number

	PUT /api/customer/{customer} is now a partial update, not full update

	increased max_result_window for Elasticsearch to return more documents

	removed column with template name from CSettings -> Emails table

	removed redundant web hook onCustomerLevelChanged

	logic how a customer will be downgraded or upgraded to next level

	searching customers in POS by name or last name as a wildcard

Fixed

	added missing translations

	phone number validation (less restrict)

	creating a new earning rule after changing it’s type

	matching transaction with customer using upper letters

	table pagination

	creating a reward campaign other than Cash Back

	assign a new percent discount code to the customer

[2.9.0] 20-08-2018

Added

	configurable e-mail content for referring a friend

	markdown for campaign details

	new earning rule “Instant Reward” to collect rewards instantly after a transaction

	include/exclude labels for earning rule “General Spending Rule”

	locking points for X number of days

	assign earning rules to the POS

	set earning rule as last

Changed

	label value for the customer is not required anymore

Fixed

	download level list as CSV file

	translations

	search client by first or last name in POS

	upload button in firefox

	upgrading read model

	dashboard

	points transfer list in client cockpit

	creating Earning Rule without labels

[2.8.0] 20-07-2018

Added

	configuring marketing automation tool in the administration panel

	new command “phing migrate” to automate migration between versions

	new development documentation

	master key API token

	filtering campaign through additional fields

	seller can add or spend points for a customer

	assign earning rule to the POS

	resizing logos

	added level ID to the endpoint /api/customer/level

Changed

	changed Earning Points Rules to Earning Rules

Fixed

	validation tags on Earning Rule “Multiply by labels”

	fixed link to the terms and conditions file

	fixed bug with Earning Rule “Custom event rule”

	generating demo data

[2.7.0] 03-07-2018

Added

	possibility to set an accent color for client cockpit

	/api/customer/level to get list of possible levels for customers

	added new earning points rule “Multiply by product label”

	new configuration option to upload terms and condition file

	labels to the transaction

	labels to the reward campaigns

Changed

	docker images

	docker-compose settings, check updated README.md

Fixed

	sorting for /api/customer/campaign/available

	registering a refund transaction and subtracting points

	saving settings with a various set of values

	changing reward campaign photo

	forgot password on client cockpit

[2.6.0] 05-06-2018

Added

	upload customer from XML file

	add Earning Points Rule name to the Transfer Points comment (https://github.com/DivanteLtd/open-loyalty/issues/79)

Changed

	segment or level is now required in Earning Points Rules

	only png/jpg/jpeg files are now supported for logo

	updated Symfony to latest version 3.4.11 with security fixes

Fixed

	generating demo data

	updating administrator account

	choosing different language in Settings -> Configuration (https://github.com/DivanteLtd/open-loyalty/issues/83)

[2.5.0] 25-05-2018

Added

	added property hasPhoto to indicate a model has photo in campaigns, earning points rules and levels

	added photo to Levels

	added photo to Earning Points Rules

	added uploading transactions from XML file

	added new Reward Campaign “CashBack”

	added a new property “Prize value” to the Reward Campaigns

	added a new property “Tax” to the Reward Campaigns

	added a new settings “Small logo”

	added uploading points transfers from XML file

	added a new sorting filter “manuallyAssignedLevel” to the customer list

	added a method to unassign a customer from assigned manually level /api/customer/{customer}/remove-manually-level

Changed

	upgraded minimum version of PHP from 7.0 to 7.1

	changed campaignId object to string in response from /api/customer/campaign/bought

	property “pointsEarned” is now always available in the /api/transaction response

[2.4.0] 23-04-2018

Added

	added missing translations

	added translatable program name in the title bar in browser

	added list of redeemed rewards

	added matching transaction with a customer using phone number

	added new SMS gateway WorldText

	added possibility to log in using phone number

	added settings to change activation method (e-mail or sms)

	added endpoint to match transactions by a customer

Fixed

	fixed minor bugs with customer activation using SMS

	fixed searching customers (/api/customer)

[2.3.1] 12-04-2018

Added

	added [API documentation](http://open-loyalty.readthedocs.io/en/latest/)

[2.3.0] 05-04-2018

Added

	added API aliases to fix X-AUTH-TOKEN invalid credentials

	added comment to the points transfer list

	added missing translations

	added a new feature to activate a customer using SMS

Fixed

	fixed SQL Injection vulnerabilities

[2.2.0] 28-02-2018

Added

	encryption parameter for Swiftmailer

	logo validation

	added APCu cache layer for mappings and query building in Doctrine ORM

	better concurrency support for writings

	increased performance

	added makefile for common used commands

Changed

	upgraded jquery to 3.x version to fix potential vulnerabilities

	upgraded Symfony framework to version 3.4 LTS

	upgraded Broadway library to version 2.0.1 (it’s a BC break)

	changed README.md

Fixed

	changing merchant data in AC

	searching a client in POSC

	rounding points in emails

[2.1.0] 28-01-2018

Added

	Added new customer account statuses (it’s a BC break!)

	Collect / spend points only when a customer has a defined status

	Support GDPR

	A new setting where you can change loyalty program logo

	More information link field for a reward campaign

	Display reward campaign’s image in client cockpit

Fixed

	Missing transactions in the POS cockpit

	Remove transfer points in Admin Cockpit

	Vagrant setup for Windows users

	Fixes missing placeholders

[2.0.0] 2017-11-16

Added

	Kubernetes support

Changed

	Docker files

	Frontend migration from Gulp to the Webpack

	Migration from Nodejs server to the Nginx

[1.4.0] 2017-11-07

Added

	CLI command to restore read model using event store

Fixed

	AC/POSC fixed transaction id

	AC/POSC show points for each transaction

	AC clear fields after changing event type

	POSC fixed missing days from last order

	CC fixed cancel button

[1.3.1] 2017-10-23

Added

	Added change log file

Changed

	API Documentation

	Changed guide link in the admin cockpit

Fixed

	Reload application after language change

	Fixed renaming translation name

[1.3.0] 2017-10-09

Changed

	Added new endpoints to the API documentation

Fixed

	Fixed PHPUnit configuration

	Changed label for Postgres from latest to version 9

[1.2.1] 2017-09-28

Added

	Added API documentation

Fixed

	Fixed wrong marketing agreement label

	Fixed table width on the transaction details

	View level & segment names instead of ID in the reward campaign view

	Show newly added language in the settings

[1.2.0] 2017-09-08

Changed

	Moved code to the vendor

Fixed

	Fixed customer activation link

	Fixed variables in the e-mail templates

	Fixed link to the page “See rewards you have already redeemed”

[1.1.0] 2017-07-21

Changed

	Allow decimal numbers for point value field in the general spending rule

	Change default language from PL to EN

Fixed

	Fixed loader look

3.x

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

[3.3.0] 22-03-2019

Added

	(#2377) Send SMS when a transaction is matched

	(#2384) [API][ADMIN] Added avatar for customers

	(#1252) [DEV] Asynchronous email sending using RabbitMQ and worker

	(#1253) [DEV] Asynchronous segments recalculation using RabbitMQ and worker

	(#1254) [DEV] Asynchronous levels recalculation using RabbitMQ and worker

	(#1684) [ADMIN] Added all Reward Campaign details to the view page

	(#2101) [DEV] Added RabbitMQ for asynchronous jobs

	(#2119) [DEV] Asynchronous points expiration using RabbitMQ and worker

	(#2120) [DEV] Asynchronous points activation using RabbitMQ and worker

	(#2121) [DEV] Asynchronous notification about expiring points using RabbitMQ and worker

	(#2122) [DEV] Asynchronous coupons activation using RabbitMQ and worker

	(#2123) [DEV] Asynchronous coupons expiration using RabbitMQ and worker

	(#2124) [DEV] Asynchronous notification about expiring coupons using RabbitMQ and worker

	(#2125) [DEV] Asynchronous notification about expiring levels using RabbitMQ and worker

	(#2158) [API] GET /api/campaign sorting by createdAt

	(#2158) [API] GET /api/customer/campaign/available by createdAt

Changed

	(#1886) [API][CC] Show Custom Campaigns in CC

	(#2134) [BC][API] GET /api/campaign/public/available changed SegmentNames type to object

	(#2180) [DEV] Optimized consumers architecture

	(#2386) [BC][API] GET /customer/{customerId}/status changed “pointsExpiringBreakdown” type to object

	(#2386) [BC][API] GET /admin/customer/{customerId}/status changed “pointsExpiringBreakdown” type to object

	(#2386) [BC][API] GET /seller/customer/{customerId}/status changed “pointsExpiringBreakdown” type to object

	(#2031) [API][ADMIN] Disabled changing Reward Campaign’s type after it’s created

	(#2036) [BC] Migrated Elastcisearch from 2.2 to 6.7

	(#2109) [ADMIN] Moved “Days inactive” and “Days valid” from “Campaigns details” section to the “Coupons”

	(#2116) [DEV] Upgraded to the latest Symfony version

	(#2427) [ADMIN] Removed counter in the level list

	(#2428) [ADMIN] Removed “no results” notification when permission denied as set in the ACL

Fixed

	(#2013) A customer can register a return transaction to the other customer transaction

	(#2153) [API] GET /api/customer/{customerId}/status wrong points expiration breakdown

	(#2147) [API] GET /api/customer/campaign/available doesn’t return all available campaigns

	(#2157) [API][ADMIN] An admin with View permissions for Reward Campaigns is able to change Delivery status of redeemed rewards

	(#2334) Point for referrer is released when the referred account is created, not when it’s activated

	(#2401) [API] POST /api/customer/campaign/coupons/mark_as_used misses “couponId” in the response

	(#2444) [DEV] Missing configuration for sending SMS notification other than account activation or password reminder

	(#2038) [API] POST /api/admin/campaign/cashback/redeem 500 Internal Server Error while calling

	(#2038) [API] POST /api/admin/campaign/cashback/simulate 500 Internal Server Error while calling

	(#2111) Customer’s level name doesn’t change after renaming

	(#2112) [ADMIN] Logo doesn’t scale in the left upper corner

	(#2141) [API] POST /api/transaction/simulate 500 Internal Server Error while calling

	(#2149) Fixed wrong round up transaction summary

	(#2175) [API] GET /api/customer/{customerId} wrong calculation of pointsExpiringNextMonth

	(#2178) [ADMIN] markdown for chinese language doesn’t show

	(#2183) [API] POST /api/customer/campaign/{campaign}/buy missing quantity in API DOC

	(#2183) [API] POST /api/seller/customer/{customer}/campaign/{campaign}/buy missing quantity in API DOC

	(#2198) [DEV] Segment with condition “Bought specific SKU” doesn’t work when SKU contains special characters

	(#2375) [DEV] Performance issue with a lot customers assigned to the segments

	(#2390) [CC] Summary of available points shows wrong value

	(#2412) [DEV] Losing connection between worker and RabbitMQ

	(#2414) [DEV] Invalid snapshotting in Event Sourcing

	(#2415) [DEV] 409 Conflict exception during many concurrent writes to the Elasticsearch

	(#2422) [ADMIN] No info while logging without data to the admin panel

	(#2434) [API] GET /api/admin/customer/{customer}/campaign/available wrong sorting

	(#2434) [API] POST /api/transaction triggers a webhook with wrongly rounded transaction’s total

	(#1637) [ADMIN] Missing validation for labels in Earning Rules

	(#2080) [API] GET GET /api/admin/customer/{customerId}/campaign/available?perPage=100&sort=campaignVisibility.visibleFrom&direction=desc wrong sorting

Note! In this version introduced a few features that breaks backward-compatibility.
Note2! Check UPGRADE-3.3.md to see how to upgrade.

[3.2.0] 14-01-2019

Changed

	Setting “Downgrade every X number of days” is now mandatory

Fixed

	The last row in the menu was half cut when the expanded menu is longer than the height of browser

	Fixed editing merchants

[3.1.1] 14-01-2019

Added

	Added User Guide to the documentation

[3.1.0] 14-01-2019

Note! In this version introduced a few features that breaks backward-compatibility.
Note2! Check UPGRADE-3.1.md to see how to upgrade.

Added

	Added Snapshots for Event Sourcing to increase performance

	Added new options for expiring points in Settings -> Configuration (all time active / after x number of days / at the end of the month / at the end of the year) (new feature)

	Added User Guide at https://open-loyalty.readthedocs.io

	Added new ACL for administration panel (new feature) (BC break)

	Added return “Voucher” for a customer during registration a return transaction (new feature)

	Added information about active and used points to the export in levels

	GET /api/admin/customer/{customerId}/status added information about points going to expire in next month

	GET /api/seller/customer/{customerId}/status added information about points going to expire in next month

	GET /api/customer/{customerId}/status added information about points going to expire in next month

	Added option “Fulfillment Tracking Process” to the Reward Campaign so an administration is able to change reward status (ordered / delivered / canceled / shipped) (new feature)

	Added usage datetime of coupon in the GET /api/campaign/bought

	Added an option at Settings -> Configuration to disable edit customer profile by himself except password change (new feature)

	Added new filters “isFeatured”, “hasSegment”, “categoryId[]”, “format” to GET /api/campaign/public/available

	Added an integration with Pushy to send push notifications (new feature)

	Added missing configuration to notify a customer a X number of days before level expires using Webhooks

	GET /api/admin/customer/{customerId}/status added information about points expiration per day

	GET /api/seller/customer/{customerId}/status added information about points expiration per day

	GET /api/customer/{customerId}/status added information about points points expiration per day

	Added limitation by POS, segments and levels in the Earning Rule with type “Geolocation”

	Added sending information about rewards that became available for a customer using push notifications (new feature)

	Added new types of “Usage limit active” for “Custom event rule” in Earning rule

	Added an configuration (simple/advanced) in the app/config/parameters.yml to change password requirements

	Added an configuration in the app/config/parameters.yml to change the length of activation code sent using SMS activation method

	Added upload avatar for a customer profile (new feature)

	Added support for IE 11 for an administration panel

	Added POST /api/customer/earnRule/{eventName} to call “Custom event” Earning Rule with customer JWT Token

	Added migration mechanism using Doctrine Migrations (new feature)

Changed

	Prevent from registering a return transaction for non-existing transaction by documentNumber field

	Prevent marking coupon as Unused by a customer

	Changed Nginx version to 1.14.1

	PUT /api/customer/{customer} works now as a partial update instead of full update (BC break)

	Earning Rule with type “Geolocation” accepts now coordinates with five digits after decimal point

	Increased php-fpm start processes to 5, min processes to 3 and max processes to 20

	Increased php-fpm memory limit to 512MB

	PHP-FPM is now configurable using docker/prod/php/conf/php-fpm-pool.conf

	Changed translation in Settings - Notify user from “Days to level recalculation” to “Days before level recalculation to notify user”

	Updated the documentation how to add a new segment

	Disabled remove already redeemed coupons by a customer from Reward Campaign

	Renamed GET /api/campaign/public/featured to GET /api/campaign/public/available

	Removed filter “isPublic” from GET /api/campaign/public/available

	Changed how projections to the Elasticsearch works by making them independent of each other

	Changed ol__setings table by adding a unique constraint for setting_key column

	Changed invitation process when SMS activation method is enabled POST /api/invitations/invite (BC break)

	Changed crons by adding flock

	Changed default sorting to “order” for categories of Reward Campaign in the administration panel

	Removed “program_name” parameter from app/config/parameters.yml

Fixed

	Fixed calling API endpoints starting with /api/customer by an administrator using X-AUTH-TOKEN

	Fixed marking coupon as Used / Unused by an administrator

	Fixed calculating level based on “Active points”

	Fixed calculating level based on “Total points earned since last level recalculation”

	Fixed automatically assign a birth date to the customer during update

	Fixed PUT /api/customer/{customer} so it won’t remove labels accidentally

	Fixed translate level name on GET /api/customer/status?_locale={locale} according to the locale passed in the query parameter

	Fixed 500 error while registering a new transaction when at least one Earning Rule has set option “All time active”

	Fixed that an administrator see only “Example_coupon” on the Reward Campaign’s edit page

	Fixed adding points manually so it now has an impact on customer level

	Fixed 500 error when now level with condition value equal zero is defined

	Fixed activating and expiring coupons

	Fixed 500 error during creating Reward Campaign with type “Instant Reward”

	Fixed removing a language from the configuration

	Fixed logo size on the administration panel sites

	Fixed adding a new customer by an administrator in specific system configuration

	Fixed using Earning Rule with type “QR code”

	Fixed changing type of Earning Rule during creating a new one

	Fixed forgot password when customers phone number was changed

	Fixed usageLeftForCustomer value in GET /api/customer/campaign/available for single coupon

	Fixed filtering by date in redeemed rewards table

	Fixed remove field value while edit Reward Campaign in the administration panel

	Fixed sorting GET /api/admin/customer/{customer}/campaign/available using sort=campaignVisibility.visibleFrom

	Fixed GET /admin/analytics/points to show a correct number of spent points in loyalty program

	Fixed 500 error while buy reward campaign in POST /api/admin/customer/{customer}/campaign/{campaign}/buy

	Fixed crons for expire or activate coupons

	Fixed 500 error when a transaction missed a required documentNumber field POST /api/transaction

	Fixed supervisord in the production docker image

	Fixed edit customer profile automatically set a manual level and disabled level change

	Fixed selectbox shows only 10 segments while create Reward Campaign or Earning Rule

	Fixed missing markdown for shortDescription in the Reward Campaign

	Fixed unable to extend section with default language

	Fixed showing a customer in the more than one level list at the same time GET /api/level/{levelId}/customers

	Fixed import transaction using the same documentNumber more then once

	Fixed mark coupon as used by an administrator POST /api/admin/campaign/coupons/mark_as_used (BC break)

	Fixed 500 error while import transactions without or with invalid posId

	Fixed Earning Rule with type “Account created” that was never called

	Fixed “Timezone” setting at Settings -> Configuration

	Fixed value of “usageLeftForCustomer” in GET /api/customer/campaign/available when single coupon used

[3.0.0] 15-10-2018

Added

	multi photos for reward campaigns (new feature)

	segments, levels and POS limits now available in the Geolocation Earning Rule (new feature)

	Custom Reward Campaign that allows to link with Custom Earning Rule or QRCode Earning rule and reward customer with points (new feature)

	QRCode Earning Rule (new feature)

	new currency HDK to the settings

	multi language for Levels, Reward Campaigns, Reward Campaigns Category (new feature)

	new API endpoint /api/settings/css allowing to get custom CSS rules for Client Cockpit

Changed

	importing transaction with POS information is now simplified, you can define posIdentifier or posId

	size of textareas has been decreased

Fixed

	data in Elastic Search was not always up to date

	unable to add a points transfer when customer databases was large

	a phone number was not copied from customer to transaction while matching transaction with customer

	customer could register twice with the same phone number when activation method is SMS

	a negative radius value in Geolocation Earning Rule caused 500 error

	while creating Reward Campaign there was only first 10 reward categories to choose, now unlimited

	buying a campaign when a customer has no phone number caused 500 error

	fixed typos

	missing translations

4.x

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

[4.1.0] 29-01-2020

Added

	(#1105) [ADMIN] Added anonymization feature for GDRP

	(#1769) [DEV] Upgrade PHP version to 7.3

	(#2491) [DEV] Migration to latest Symfony 4.4

	(#2327) [DEV] Upgrade dependencies of the project

	(#2397) [ADMIN] Searchable select boxes in the administration panel

	(#2432) [DEV] Add redis support for better performance

	(#2460) [DEV] Added MiniKube scripts

	(#2461) [DEV] Added cache layer for API using Varnish for better performance

	(#2481) [DEV] Open Loyalty’s skeleton for custom projects

	(#2520) [ADMIN] Multi store levels

	(#2522) [ADMIN] Multi store transactions

	(#2521) Extend Webhooks with more data

	(#2523) Import transaction from remote S3 for storage

	(#2524) [ADMIN] Disable emails

	(#2543) [ADMIN]Assign labels to transactions for import XML

	(#2563) [ADMIN] Delete levels

	(#2566) [ADMIN] Delete customers

	(#2577) [DEV] Overriding Crontab jobs

	(#2606) [ADMIN] Match transactions with customers through XML import

	(#2607) [ADMIN] Improved filtering and sorting

	(#2608) [ADMIN] New dashboard

	(#2625) [DOC] Improved documentation

	(#2640) [ADMIN] Segments statistics

	(#2654) Asynchronous Webhooks

	(#2659) [API] Locking & releasing points

Changed

	(#2320) [ADMIN] Improved Admin panel for mobile devices

	(#2624) [DEV] Removed false-positive exception in logs

	(#2509) Removed transaction’s document number uniques check while importing

	(#2533) [DEV] More verbose logging of all errors

	(#1204) [ADMIN] Removed customer’s statuses from settings

	(#2603) [ADMIN] Points transfers can be imported through XML file by email address or phone number of customer

	(#2604) [ADMIN] Customers’ address is now optional

Fixed

	(#2469) [ADMIN] Unable to downgrade or reset points using setting “Earned points since last level change”

	(#2165) [API] 500 Internal Server error after trying to save changes specific campaign.

	(#2328) [ADMIN] Empty levels list on dashboard

	(#2346) [API] 500 Internal Server error after trying trigger “ANY/manifest” endpoint

	(#2376) [ADMIN] POS’ transactions amount is not updated

	(#2488) [API] 500 after editing labels for transaction using incorrect transactionId

	(#2507) [ADMIN] Empty loyalty card number on customer’s profile after matching a transactions with a customer using loyalty card number

	(#2531) [API] An error while resetting password already requested, without information what is wrong

[4.0.10] 10-10-2019

Added

	(#2643) [API] GET /customer/transaction Added transaction assign date

	(#2642) [ADMIN] Return points once a redeemed reward has been rejected

Fixed

	(#2653) [DEV] Fixed queue overflow

	(#992) [ADMIN] Can’t upload CSV with coupon on Windows

	(#2323) Incorrect customer’s level after registering a return transaction

	(#2662) [CC] Can’t register as a customer on iPhones

[4.0.9] 25-11-2019

Added

	(#2584) [ADMIN] Added audit status approval for Redeemed Rewards

	(#2585) [ADMIN] Added audit approval to Reward Campaigns

	(#2588) [ADMIN] Added audit comment for Redeemed Rewards

	(#2590) [ADMIN] Added custom ACL privilege

Changed

	(#2587) [ADMIN] Changed business logic of status, audit status and delivery status for Redeemed Rewards

	(#2619) [ADMIN] Removed unused currencies

	(#2622) [API] POST /customer/campaign/{campaign}/buy added couponId to the response

	(#2583) [API] GET /customer/campaign/bought added status and used to the response

Fixed

	(#2602) [ADMIN] Fixed CLV on the customer profile page

	(#2629) [DEV] Applied Symfony security fixed

	(#2605) [ADMIN] Cannot add points transfer with two digits after decimal

	(#2609) [ADMIN] Blank number of subtracted points for return transactions

	(#2614) [ADMIN] Can’t edit Reward Campaign

	(#2581) [API] GET /customer/registrations/daily exceeds memory limit

	(#2610) Fixed PayTM status synchronization

	(#2637) Error on using non-existing coupon ID

	(#2651) [ADMIN] Points displayed without fractions in Redeemed Rewards view

[4.0.8] 10-10-2019

Added

	(#2170) [ADMIN] Added information about Open Loyalty version

	(#1607) [ADMIN] Added more currencies

Fixed

	(#2575) [ADMIN][API][CC] Fixed incorrect filtering and sorting by level name

	(#2260) [ADMIN] Fixed “Add points transfer” button on the customer profile

[4.0.7] 04-10-2019

Added

	(#2503) [ADMIN] Added new cashback as a new Reward Campaign using PayTM

	(#2572) [DEV] Added parallel indexer to speed up rebuilding process of read data in Elasticsearch

Changed

	(#2541) [DEV] More information during rebuilding read data in Elasticsearch

	(#2555) [DEV] Improved docker images building process

Fixed

	(#2549) Fixed migrations to not override existing data

	(#2560) Fixed webhook duplication & cache

	(#2571) [ADMIN] Fixed old data on customer profile after transaction was matched

	(#2322) [API] Fixed error after buying campaign without name

	(#2332) [API] POST /api/customer/campaign/{campaign}/buy fixed error when quantity more than 15

	(#2505) [ADMIN] Fixed importing transactions with non-existing revisedDocument number

	(#2553) [ADMIN] Fixed issue with sending long text messages using WorldText

	(#2574) [DEV] Fixed missing logger

	(#2580) [ADMIN] Fixed returning points once cashback fails

[4.0.5] 27-08-2019

Changed

	(#2458) Trigger SMS business logic has been changed

Fixed

	(#2539) Wrong data send in email after account creation

[4.0.3] 06-08-2019

Changed

	(#2442) [DEV] Improved overall performance & scalability

[4.0.1] 24-06-2019

Added

	(#2440) [ADMIN] Added missing translations for avatar

Changed

	(#2427) [ADMIN] Removed number of customers in level list

	(#2428) [ADMIN] Changed message for permission denied

Fixed

	(#2434) Fixed wrong data in Webhook thrown after registering a new transaction

	(#2441) [DEV] Fixing wrong docker-compose configuration

[4.0.0] 31-05-2019

A major changes in the file structure were introduced in this version.
If you have any custom code, it may stop working and you need to adjust all your custom modifications.

Added

	(#2398) Send SMS when a transaction is matched

	(#2396) Implement cursors for all exports

	(#2393) Prepare MiniKube deployment scripts for OL

	(#2389) [ADMIN] Create filters and make columns sortable

	(#2337) [DOC] How to add a new API endpoint

	(#2339) [DOC] How to create a new bundle

	(#2341) [DOC] How to add command & command handler

	(#2298) [DOC] Front-End Developer CookBook

	(#2126) Asynchronous notification about new reward campaigns

Changed

	(#2201) Randomize coupon redemption order

	(#2425) Improve horizontal application scaling

	(#2423) Remove domain-specific IDs.

	(#2402) Export customers API with scroll support

	(#2352) Upgrade jms-serializer/serializer-bundle 1.1 to jms/serializer-bundle 1.1

	(#2333) Upgrade twig/twig to 2.7

	(#2306) Upgrading PHP to 7.2

	(#2297) JS, HTML, CSS code refactoring

	(#2296) Webpack improvement

	(#2211) [BC][DEV] Initial code structure

	(#2212) [BC][DEV] Rearrange Account

	(#2213) [BC][DEV] Rearrange ActivationCode

	(#2214) [BC][DEV] Rearrange AnalyticsBundle

	(#2215) [BC][DEV] Rearrange Audit

	(#2216) [BC][DEV] Rearrange Campaign

	(#2217) [BC][DEV] Rearrange Core

	(#2218) [BC][DEV] Rearrange EarningRule

	(#2219) [BC][DEV] Rearrange Email

	(#2220) [BC][DEV] Rearrange Import

	(#2221) [BC][DEV] Rearrange Level

	(#2222) [BC][DEV] Rearrange MarkDown

	(#2223) [BC][DEV] Rearrange PaginationBundle

	(#2224) [BC][DEV] Rearrange Points

	(#2225) [BC][DEV] Rearrange Pos

	(#2226) [BC][DEV] Rearrange Segment

	(#2227) [BC][DEV] Rearrange SettingsBundle

	(#2228) [BC][DEV] Rearrange SmsApiBundle and WorldTextBundle

	(#2229) [BC][DEV] Rearrange Transaction

	(#2230) [BC][DEV] Rearrange Translation

	(#2231) [BC][DEV] Rearrange User

	(#2232) [BC][DEV] Rearrange UtilityBundle

	(#2233) [BC][DEV] Rearrange Seller & Webhook

	(#2236) [BC][DEV] Clean services aliases (CoreBundle, EarningRuleBundle, EmailBundle, EmailSettingsBundle)

	(#2237) [BC][DEV] Clean services aliases (ImportBundle, LevelBundle, MarkDownBundle, PaginationBundle, PointsBundle, PosBundle)

	(#2238) [BC][DEV] Clean services aliases (SegmentBundle, SettingsBundle, SmsApiBundle, TransactionBundle)

	(#2239) [BC][DEV] Clean services aliases (TranslationBundle, UserBundle, UtilityBundle, WorldTextBundle)

	(#2252) [BC][DEV] Move commands and commands handler to application layer (Account, Audit, Campaign, Core)

	(#2254) [BC][DEV] Move commands and commands handler to application layer (Customer, EarningRule, Email)

	(#2258) [BC][DEV] Move commands and commands handler to application layer (Level, Pos, Segment)

	(#2259) [BC][DEV] Move entity ids to Core component

	(#2265) [BC][DEV] Split AnalyticsBundle to ADR

	(#2266) [BC][DEV] Split AuditBundle Controllers to ADR pattern

	(#2267) [BC][DEV] Split CampaignBundle Controllers into ADR Pattern

	(#2268) [BC][DEV] Split EarningRuleBundle Controllers into ADR Pattern

	(#2269) [BC][DEV] Split EmailSettingsBundle Controllers into ADR Pattern

	(#2270) [BC][DEV] Split LevelBundle Controllers into ADR Pattern

	(#2271) [BC][DEV] Split PointsBundle Controllers into ADR Pattern

	(#2272) [BC][DEV] Split PosBundle Controllers to ADR pattern

	(#2273) [BC][DEV] Split SegmentBundle Controllers to ADR pattern

	(#2274) [BC][DEV] Split SettingsBundle Controllers to ADR pattern

	(#2275) [BC][DEV] Split TransactionBundle Controllers to ADR pattern

	(#2277) [BC][DEV] Split UserBundle Controllers into ADR Pattern

	(#2278) [BC][DEV] Split UtilityBundle Controllers to ADR pattern

	(#2279) [BC][DEV] Move Business logic AnalyticsBundle to Domain Services

	(#2280) [BC][DEV] Move Business logic AuditBundle Controllers to Domain Services

	(#2281) [BC][DEV] Move Business logic CampaignBundle Controllers to Domain Services

	(#2282) [BC][DEV] Move Business logic EarningRuleBundle Controllers to Domain Services

	(#2283) [BC][DEV] Move Business logic EmailSettingsBundle Controllers to Domain Services

	(#2284) [BC][DEV] Move Business logic LevelBundle Controllers to Domain Services

	(#2285) [BC][DEV] Move Business logic PointsBundle Controllers to Domain Services

	(#2286) [BC][DEV] Move Business logic PosBundle Controllers to Domain Services

	(#2287) [BC][DEV] Move Business logic SegmentBundle Controllers to Domain Services

	(#2288) [BC][DEV] Move Business logic SettingsBundle Controllers to Domain Services

	(#2289) [BC][DEV] Move Business logic TransactionBundle Controllers to Domain Services

	(#2291) [BC][DEV] Move Business logic UserBundle Controllers to Domain Services

	(#2292) [BC][DEV] Move Business logic UtilityBundle Controllers to Domain Services

	(#2210) [BC][DEV] Rearrange code in to layer architecture

	(#2234) [BC][DEV] Clean old fashion aliases to services

	(#2247) [BC][DEV] Move commands and commands handler to application layer

	(#2262) [BC][DEV] Split controllers to ADR pattern

	(#2264) [BC][DEV] Move Business logic from ADR controllers to Domain Services

Fixed

	(#2415) Eliminate 409 exception (concurrent write to ES)

	(#2414) Invalid snapshotting while adding many requests for the same aggregate root

	(#2412) Rabbit connection problem

	(#2409) Change places in code where max_window_size limit the result of data

	(#2395) Fix all issues with max_window_size limit

	(#2394) Adjust pagination in all tables

	(#2311) Refactoring classes without interfaces.

	(#2309) Fix all file comments

	(#2308) Remove services_deprecated.yml

	(#2416) [CC] No information about customer registration

	(#2045) [CC] Fixed wrong edit button name

	(#2324) [CC] Incorrect information about activity/visibility for the reward campaign in PWACC

	(#2335) Cron job is not executed and wrongly saved pushy tokens

Open Loyalty FAQ

These are some of the most common questions and answers about Open Loyalty. If you couldn’t find your question in the list below, please contact us here [https://www.openloyalty.io/].

1. I registered a customer, but I lost my account activation code. How can I resend the code?

1. Account activation via SMS

After registration form fulfillment by customer from client cockpit, on the phone number provided in ther form activation code will be sent. If for some reason customer will lost this code he can simply resend a code. To do this, he need to go to the login page and click “Activate an account or resend a code”, then click “Resend code” button and provide phone number. After that he will get another acitavtion code.

Note, if you register customer from Admin or POS Cockpit activation code is not sent. Customer account is active instantly.

2. Account activation via email

After registration form fulfillment by customer from client cockpit, on the email address provided in the form activation link will be sent. If for some reason customer will lost this link/email, his account can be activated manually by Admin on your side. Customer can send a message on help email or call to customer care department.

Note, if you register customer from Admin or POS Cockpit activation link is not sent. Customer account is active instantly.

2. We need to verify end-to-end earning mechanism is working properly. How can we emulate transaction without have a real POS in our testing environment?

XML File Upload

The first option is to import transaction from XML file. In OL user guide please find chapter “Import transaction” (p.107). Here you will find description of transaction import process and example of XML file structure.

3. In “Points Transfer” section, admin wants to batch import the “points transfer” list. What is the required format of the XML file? Is it the only supported file format, how about .csv file format?

CSV file format is not supported.

In OL user guide please find chapter “Creating points transfer” (p.92). Here you will find description of points transfer import process and example of XML file structure.

4. In “Customers” section, admin wants to batch import the “customer” list. What is the required format of the XML file? Is it the only supported file format, how about .csv file format?

CSV file format is not supported.

In OL user guide please find chapter “Creating customer account” (p.46). Here you will find description of customer import process and example of XML file structure.

5. Is there a way to ‘preview’ campaign before publishing to live view?

There is no possibility to “preview” campaign before publishing.

From Admin cockpit you can create a new reward campaign, but with inactive status. In that case campaign will be not displaying on a storefront until it’s status will be change to active. Till this time you can edit all information related to this campaign e.g. description, photo, conditions etc.

In OL user guide please find chapter “Creating reward campaign” (p. 177). Here you will find description of reward creation process.

6. If the customer used available points to redeem a coupon, what would happen to the customer level?

Active Points

As a customer, upon purchasing goods in a store (or other activity e.g. scanning a QR code), points will be earned. (Increase in active points)

The customer could use the earned points to redeem coupon or other rewards before the active points expired.

However, this use of points action (Decrease in active points) will not affect the customer “Level”.

If the customer used up all the active points (Active points = 0) for coupon, the customer level will not down grade. (will remain in current level)

Active points will return to 0 upon:
- the customer used up all the points;
- all the points expired.

Accumulated Points

Level is the accumulation of earned points. It represents how the customer has achieved.

Each level entitled the customer with specific rewards or benefits. (e.g. 20% off on every purchases.)

Upon the accumulation of earned points reached a certain amount, the customer level will be upgraded.

7. What is Open Loyalty approach for admin access right? Any preset admin account type?

Single level access in current offering.

8. Admin wants to create birthday offer campaign which target for user who born on each months. How could the admin define those birthday segment for each 12 month?

In current offering it’s not possible to define a date range.

OL standard gives an option to create a segment with customers whose have a birthday e.g. in 30 days from today. Segment will be recalculated dynamically - it means that customers will be associated and dissociated from a segment as they have a birthday in specified period.

9. When customer visit an offline store, coupon may be used during transaction. Is there a way to view records of used coupon per POS?

In current offering there is no option to see records of used coupon per POS.

From All reward campaigns view you can see how many times this reward was used by customers in general (sum from all POSes and website) . For example, if you have “percentage discount code” you will be able to see in “Used by customers” column how many times this reward has been redeemed (delivered and used)

10. Which one would be the expected bahviour of InstantRewards?

1) the customer could get the reward coupon instantly.

or

2) the customer is able to see the reward campaign and redeem the coupon manually.

The expected behaviour of Instant Reward is the 1st approach. When event is complete, for example GPS check in, customer will get reward instantly. Reward will appear in “Redeemed reward” section on client cockpit and Admin cockpit.

From the Admin you will be able to see status of this reward:

	delivered - customer get reward, reward is displaying in Redeemed reward section

	used - customer used reward

11. I want to know how Earning points rule mechanism work, from developer perspective. Where can I find developer documentation?

Open Loyalty Developer Documentation is published for everyone here [http://open-loyalty.readthedocs.io/en/latest/].

Documentation is updated after every new feature release.

How to add a new API endpoint

Let’s say you want to add a new endpoint that will return just another list of earning points rules.
Here is a step-by-step guide how to achieve this.

First of all, you need to create a new controller in appropriate directory corresponding to the context (subdirectory of src/Ui/RestBundle/Controller in case of extending REST API).
Here is a sample code

<?php
namespace OpenLoyalty\Ui\RestBundle\Controller\EarningRule;

use FOS\RestBundle\Controller\Annotations\Route;
use FOS\RestBundle\View\View;
use Nelmio\ApiDocBundle\Annotation\Operation;
use Swagger\Annotations as SWG;
use Symfony\Component\HttpFoundation\Request;
use FOS\RestBundle\Controller\FOSRestController;

class GetList extends FOSRestController
{
 /**
 * @Route(methods={"GET"}, name="app.earning_rule.index", path="/earningRule/list")
 *
 * @Operation(
 * tags={"Earning Rule"},
 * summary="Method will return all active earning rules.",
 * @SWG\Response(
 * response="200",
 * description="Returned when successful"
 *)
 *)
 *
 * @param Request $request
 *
 * @return View
 */
 public function __invoke(Request $request): View
 {
 return $this->view(['data' => ['some data']]);
 }
}

Note

According to ADR pattern it’s important to implement __invoke method and to create only one controller for each endpoint.

@Route is an annotation to create a new route in Symfony Framework. The methods field specifies a list of methods that the endpoint will respond to.
The name is useful for creating links and redirection but not currently used as we’re implementing RESTful API.
The path is an endpoint URI. <https://symfony.com/doc/4.3/routing.html>`_.

@Operation is an annotation from NelmioDocApi bundle to create a documentation for our API. This documentation is
automatically generated from this annotation and available at http://openloyalty.localhost/doc

More information about this bundle you can find here [https://symfony.com/doc/current/bundles/NelmioApiDocBundle/index.html].

@param and @return are standard comments for developers and self-explanatory.

Then we have an __invoke method implemented in our controller that takes HTTP request as an argument and return a json response.

Now, when we have a new controller, the last thing to do is register it in the framework. To do that, add a follow
line in src/Ui/Rest/Resources/config/routing.yml

earning_rule:
 resource: '@OpenLoyaltyUiRest/Controller/EarningRule/'
 type: annotation

Note

It’s important to define this route before open_loyalty_core, not after, as Open Loyalty has an endpoint /api/earningRule/{earningRule} where {earningRule} is an variable and accepts any parameter, including list from our route.

HTTP Responders

It’s a readable way of responding other types of data (other than json/rest api modeled data). In this approach a HTTP Response object should be returned by a Responder class which should contain only one public method __invoke()
Here is an example of such use case:

<?php

declare(strict_types=1);

use Symfony\Component\HttpFoundation\Response;

/**
 * Class InlineStreamResponder.
 */
class InlineStreamResponder
{
 /**
 * @param string $content
 * @param string $mimeType
 *
 * @return Response
 */
 public function __invoke(string $content, string $mimeType): Response
 {
 $response = new Response($content);
 $response->headers->set('Content-Disposition', 'inline');
 $response->headers->set('Content-Type', $mimeType);

 return $response;
 }
}

After you have the responder’s object injected (inlineStreamResponder) in your controller, it’s simple to just return result of responders’s __invoke method:

return $this->inlineStreamResponder->__invoke($content, $photo->getMime());

or call it directly:

return ($this->inlineStreamResponder)($content, $photo->getMime());

That’s it. Now you have a new API endpoint registered in Open Loyalty. You can go to the
http://openloyalty.localhost/doc and try to call this endpoint.
By default, all our /api endpoints are behind a firewall. So if you want to use /api endpoints, you need to
be logged in as an administrator and use authorization token.

To see how Symfony firewall is configured check config/packages/security.yaml

How to create a new bundle

Up until 3.x branch, Open Loyalty used standard Symfony division of application into Bundles and Components.
Starting with 4.0, we decided to embrace Domain Driven Design and Hexagonal Architecture principles.
That means every class in the system is placed according to its layer (Domain, Application, User Interface or
Infrastructure) and its bounded context (Core, User, Campaign, Level, Segment, EarningRule and so on).

Bundles are used to group the classes by their bounded context for discoverability and order – and to
group the configuration files by their area of influence.

Creating a new bundle in Open Loyalty is as simple as creating a new bundle in Symfony Framework
(see `Symfony documentation on bundles<https://symfony.com/doc/3.4/bundles.html>`_).
The only difference is the placement of the classes – all of the Symfony-required files will be placed
in the Infrastructure layer.
The bundles in Open Loyalty’s core use OpenLoyalty<name>Bundle name convention, with <name> being
the bounded context and directory’s name.

Create a bundle

Let’s create OpenLoyaltyAppBundle that will contain our logic.

First of all, create a new directory: src/Infrastructure/App and then create a class named OpenLoyaltyAppBundle:

// src/Infrastructure/App/OpenLoyaltyAppBundle.php
namespace OpenLoyalty\Infrastructure\App;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class OpenLoyaltyAppBundle extends Bundle
{
}

Then you need to register your newly created bundle in the framework.
Go to app/AppKernel.php file and add an instance of your bundle to $bundles array.

// app/AppKernel.php
public function registerBundles()
{
 $bundles = [
 // ...

 // register your bundle
 new OpenLoyalty\Infrastructure\App\OpenLoyaltyAppBundle(),
];
 // ...

 return $bundles;
}

Let’s verify that the bundle has been registered properly, assuming you use Docker:

$ docker exec -it --user=www-data open_loyalty_backend bin/console debug:config

Somewhere in the table, you should see the newly created OpenLoyaltyAppBundle

Available registered bundles with their extension alias if available
==

 --------------------------------- ------------------------------
 Bundle name Extension alias
 --------------------------------- ------------------------------
 ...
 OpenLoyaltyAppBundle open_loyalty_app
 ...

Configure the new bundle

To add configuration to your new bundle, you need to create an Extension for it.
The process is explained thoroughly in `Symfony docs<https://symfony.com/doc/3.4/bundles/extension.html>`_,
but a brief explanation is provided below.

To make the extension visible to symfony, it needs to be in DependencyInjection directory inside the directory
which has the OpenLoyalty<name>Bundle class in it.
The name of the extension is the name of the bundle with Bundle replaced by Extension.

In our example, this means a new directory, src/Infrastructure/App/DependencyInjection, and a new file,
OpenLoyaltyAppExtension.
The extension is mostly used to load configuration from a file, but it can also add parameters and more to a container.
To do that you need to import several classes that are included in a file below:

// src/Infrastructure/App/DependencyInjection/OpenLoyaltyAppExtension.php
namespace OpenLoyalty\Infrastructure\App/DependencyInjection;

use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Loader;
use Symfony\Component\HttpKernel\DependencyInjection\Extension;

class OpenLoyaltyAppExtension extends Extension
{
 public function load(array $configs, ContainerBuilder $container)
 {
 $loader = new Loader\YamlFileLoader($container, new FileLocator(__DIR__.'/../Resources/config'));
 $loader->load('services.yml');
 }
}

The example uses an Open Loyalty convention of creating configuration files in
src/Infrastructure/<bounded_context>/Resources/config/ directory.
By convention, the application uses YAML files for their brevity.

Add persistence configuration with Doctrine

Open Loyalty uses PostgreSQL as its main data store and a write DB with Elasticsearch as a read DB.
To make operations on database easier, Doctrine’s DBAL and ORM are used.

This means you will sometimes need to create configuration files for your DB entities in order to save and read them.

Entities themselves are placed in Domain layer; the Doctrine configuration belongs to Infrastructure layer
and is placed in the same directory as the bundle class, in Persistence/Doctrine/ORM subdirectory.

This is also where declarations of Types (Persistence/Doctrine/Type) and concrete implementations of repositories
(Persistence/Doctrine/Repository) live.

To add configuration to Doctrine, you need to add Doctrine’s compiler pass to your bundle’s build method:

use Doctrine\Bundle\DoctrineBundle\DependencyInjection\Compiler\DoctrineOrmMappingsPass;
use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\HttpKernel\Bundle\Bundle;

class OpenLoyaltyAppBundle extends Bundle
{
 public function build(ContainerBuilder $container)
 {
 // ...

 $container->addCompilerPass($this->buildMappingCompilerPass());

 // ...
 }

 public function buildMappingCompilerPass()
 {
 return DoctrineOrmMappingsPass::createYamlMappingDriver(
 [__DIR__.'/Persistence/Doctrine/ORM' => 'OpenLoyalty\Domain\App'],
 [],
 false,
 ['OpenLoyaltyApp' => 'OpenLoyalty\Domain\App']
);
 }
}

An example file can look like this:

OpenLoyalty\Domain\App\SomeRecord:
 type: entity
 repositoryClass: OpenLoyalty\Infrastructure\App\Persistence\Doctrine\Repository\DoctrineSomeRecordRepository
 table: app_some_records
 id:
 recordId:
 type: record_id # This type will be defined in Persistence/Type/RecordIdDoctrineType.php
 column: record_id
 fields:
 someField:
 type: string
 createdAt:
 type: datetime
 uniqueConstraints:
 app_some_record_some_field_idx:
 columns:
 - someField

You can use other files in the current structure as examples.

Creating new Commands and Handlers

Commands are the C of the CQRS paradigm. To change the state of the domain you should use a command.
Commands should have all the data they need to be handled properly passed in their constructor parameters.

Commands should be immutable data-moving objects. All parameters should be passed by constructor.
Don’t use setters when building a command.

Create a command class

To create a command, you need to create a command class.
In the example below, the added command extends CampaignCommand to add shared methods in all of the Campaign commands.
If a shared command base exists for your bounded context, use it as needed to keep the code DRY.

// backend/src/Application/Campaign/Command/SendNewCampaignAvailableNotification.php

namespace OpenLoyalty\Application\Campaign\Command;

use OpenLoyalty\Domain\Core\Id\CampaignId;

/**
 * Class SendNewCampaignAvailableNotification.
 */
class SendNewCampaignAvailableNotification extends CampaignCommand
{
 /**
 * @var array
 */
 private $recipientTokens;

 /**
 * @var string
 */
 private $title;

 /**
 * @var string
 */
 private $message;

 /**
 * @var array
 */
 private $labels;

 /**
 * SendNewCampaignAvailableNotification constructor.
 *
 * @param CampaignId $campaignId
 * @param string $title
 * @param string $message
 * @param array $labels
 * @param array $recipientTokens
 */
 public function __construct(
 CampaignId $campaignId,
 string $title,
 string $message,
 array $labels,
 array $recipientTokens
) {
 parent::__construct($campaignId);
 $this->title = $title;
 $this->message = $message;
 $this->labels = $labels;
 $this->recipientTokens = $recipientTokens;
 }
}

Create a command handler class

The next thing to do is to create a CommandHandler class.
Notice the use of the Handler suffix in the class name.

// backend/src/Application/Campaign/CommandHandler/NotificationHandler.php

namespace OpenLoyalty\Application\Campaign\CommandHandler;

use Broadway\CommandHandling\SimpleCommandHandler;
use OpenLoyalty\Application\Campaign\Command\SendNewCampaignAvailableNotification;
use OpenLoyalty\Infrastructure\User\Notification\NotificationServiceInterface;

class NotificationHandler extends SimpleCommandHandler
{
 /**
 * @var NotificationServiceInterface
 */
 private $notificationService;

 /**
 * NotificationHandler constructor.
 *
 * @param NotificationServiceInterface $notificationService
 */
 public function __construct(
 NotificationServiceInterface $notificationService
) {
 $this->notificationService = $notificationService;
 }

 /**
 * @param SendNewCampaignAvailableNotification $command
 *
 * @throws \OpenLoyalty\Infrastructure\User\Notification\NotImplementedException
 */
 public function handleSendNewCampaignAvailableNotification(SendNewCampaignAvailableNotification $command): void
 {
 $this->notificationService->sendRewardAvailableNotification($command->toArray());
 }
}

Note

Remember that the function name must be created with the handle prefix and command name in camel case.

	Command class

	Handler function name

	SendNewCampaignAvailableNotification

	handleSendNewCampaignAvailableNotification

	AnotherExampleNotification

	handleAnotherExampleNotification

Register a command handler

Then you need to register the Command handler class in application.yml

// backend/src/Infrastructure/Campaign/Resources/config/application.yml

services:
 OpenLoyalty\Application\Campaign\CommandHandler\NotificationHandler:
 tags:
 - { name: broadway.command_handler }

Note

If every thing is wired up and working don’t forget to write tests!

How to add a new field to an entity

Open Loyalty contains two main types of entities: ORM and Event source aggregate entities (according to CQRS pattern).
You can find more details about architecture solutions in architecture section of our documentation.

ORM entities ane entities which are stored in database (PostgreSQL). Doctrine is persistence manager for that entities.
Event source aggregate entities are managed by Broadway library and objects of this type are stored in ElasticSearch as
projections and in database (PostgreSQL) as event store.

ORM entity

One of examples of ORM entity in Open Loyalty is the Campaign object. Let’s assume that we want to add a new field to
the campaign entity with name title and type string.

Entity object

Add a property to src/Domain/Campaign/Campaign.php.

/**
 * @var string|null
 */
protected $title;

/**
 * @return string|null
 */
public function getTitle(): ?string
{
 return $this->title;
}

/**
 * @param string|null $title
 */
public function setTitle(?string $title): void
{
 $this->title = $title;
}

Note

If you want to add a translatable field you will need to follow instructions from How to create a
translatable field

Then we have to extend the functions responsible for creation of an object from array data.

public function setFromArray(array $data)
{
 ...
 if (array_key_exists('title', $data)) {
 $this->title = $data['title'];
 }
 ...
}

Next open the class src/Infrastructure/Campaign/Model/Campaign.php to extend the function responsible for

public function toArray(): array
{
 ...
 'title' => $this->title,
 ...
}

Note

Not all classes require extending these functions.

Doctrine

Next, we have to let Doctrine know about the new field. Find the file
src/Infrastructure/Campaign/Persistence/Doctrine/ORM/Campaign.orm.yml and in the fields section add:

title:
 type: string
 nullable: true
 column: title

Now we can persist schema changes to the database. Execute the following Symfony command in the console:

bin/console doctrine:schema:update --force

After successful execution, the field is ready to use by the backend application, but it is not used in controllers
and is not visible in the frontend application.

Serialization

In the next step, we will let serialization know how to treat our new field. In the file
src/Infrastructure/Campaign/Resources/config/serializer/Campaign.yml in section properties, add a clause to
publicize the new field, as they are excluded as default.

title:
 exclude: false

Note

Modification serialization config files usually requires remove cache in order to work.

Controllers

Campaign entity has a possibility to store data in the new field, but now we need a way to pass its value from the user
interface. In order to do that we need to find controllers and actions responsible for adding and editing new campaigns.

In the first line of src/Ui/Rest/Controller/Campaign/Post.php file we see that data is taken from
CampaignFormType object. Let’s open it and add the following to the build function:

$builder->add('title', TextType::class, [
 'required' => false,
]);

Add a field to UI

Add the following to the frontend/src/modules/admin.campaign/templates/add-campaign.html file:

<div class="row">
 <div class="medium-2 small-3 columns">
 <label>{{ "campaign.more_information_title" | translate }} </label>
 </div>
 <div class="medium-10 small-9 columns" form-validation="validate.title.errors">
 <input type="text" ng-model="newCampaign.title"/>
 {{ "campaign.title_prompt" | translate }}
 </div>
</div>

To the file frontend/src/modules/admin.campaign/templates/edit-campaign.html add:

<div class="row">
 <div class="medium-2 small-3 columns">
 <label>{{ "campaign.more_information_title" | translate }} </label>
 </div>
 <div class="medium-10 small-9 columns" form-validation="validate.title.errors">
 <input type="text" ng-model="editableFields.title"/>
 {{ "campaign.title_prompt" | translate }}
 </div>
</div>

Event source aggregate entities

An example of an event source aggregate entity in Open Loyalty is Customer object. Let’s assume that we want to add a
new field to the Customer entity with name code and type string.

Domain entity

Like in the example above, let’s start with domain object src/Domain/User/Customer.php. As you might have noticed
this class extends SnapableEventSourcedAggregateRoot - it’s confirmation that this entity is an aggregate entity
and uses CQRS pattern. Add an entity property code with getter to this class.

/**
 * @var string|null
 */
protected $code;

/**
 * @return string|null
 */
public function getCode(): ?string
{
 return $this->code;
}

Additionally, let’s assume that we want to set the value of this field only during the registration process. To do
that, we need to find the method responsible for applying changes to domain object when customer is being registered.
The method below is executed when application is going to register a customer.

private function register(CustomerId $userId, array $customerData): void

Calling this method delegates control to another method which should update domain object:

protected function applyCustomerWasRegistered(CustomerWasRegistered $event): void
{
 ...
 if (array_key_exists('code', $data)) {
 $this->code = $data['code'];
 }
 ...
}

Controllers

Controller responsible for registering a customer is located in the file backend/src/Ui/Rest/Controller/User/Customer/PostRegister.php.
FormType associated with register customer is src/Infrastructure/User/Form/Type/CustomerRegistrationFormType.php.
There, we need to add our new field:

$builder->add(
 'code',
 TextType::class,
 [
 'label' => 'Code',
 'required' => true,
]
);

Now Open Loyalty is ready to persist the new field when customer is being registered, but we have to make a
few more adjustments.

Projections

When event CustomerWasRegistered is thrown, projectors handle the event and update/create projections. In order to find
all listeners which are listening for this event, you have to find all services with tag broadway.domain.event_listener
and with method applyCustomerWasRegistered in them. One of that listeners is
src/Domain/User/ReadModel/CustomerDetailsProjector.php. Projector does not persist a domain object, but operates
on a read model object. For example Customer is persisted in projections using src/Domain/User/ReadModel/CustomerDetails.php.

Let’s open this file and update it.

/**
 * @var string|null
 */
protected $code;

/**
 * @return string|null
 */
public function getCode(): ?string
{
 return $this->code;
}

/**
 * @param string|null $code
 */
public function setCode(?string $code): void
{
 $this->code = $code;
}

public function serialize(): array
{
 ...
 'code' => $this->getCode(),
 ...
}

public static function deserialize(array $data)
{
 ...
 if (array_key_exists('code', $data)) {
 $customer->code = $data['code'];
 }
 ...
}

Then we have to update projector:

protected function applyCustomerWasRegistered(CustomerWasRegistered $event): void
{
 ...
 $readModel->setCode($customer->getCode());
 ...
}

Last thing is to update ElasticSearch index for Customer Details projection. Go to
backend/src/Infrastructure/User/Repository/Elasticsearch/CustomerIndex.php and add a new field to the index.

'code' => [
 'type' => 'keyword',
],

Note

Changing the index in ElasticSearch requires recreating the read models in order to apply changes to an index.

Add field to UI

Adding the field to the user interface is analogous to the process presented in ORM Entites section above.

How to add a new tab in the admin panel

In this tutorial we will describe how to add a new simple tab (mock) to admin panel.

Create a module

Let’s create a new admin.mock directory in frontend/src/modules. Module contains templates directory for html
templates and minimum 3 files.

	MockController.js - responsible for controlling views,

	MockService.js - providing logic or data,

	module.js - entry point for module, defining routing, controllers, services etc.

Create module.js with content:

import MockController from './MockController';
import MockService from './MockService';

const MODULE_NAME = 'admin.mock';

angular.module(MODULE_NAME, [])
 .config($stateProvider => {
 $stateProvider
 .state('admin.mock-list', {
 url: "/mock-list",
 views: {
 'extendTop@': {
 templateUrl: 'templates/mock-list-extend-top.html',
 controller: 'MockController',
 controllerAs: 'MockCtrl'
 },
 'main@': {
 templateUrl: require('./templates/mock-list.html'),
 controller: 'MockController',
 controllerAs: 'MockCtrl'
 },
 'extendBottom@': {
 templateUrl: 'templates/mock-list-extend-bottom.html',
 controller: 'MockController',
 controllerAs: 'MockCtrl'
 }
 }
 })
 })
 .run(($templateCache, $http) => {
 let catchErrorTemplate = () => {
 throw `${MODULE_NAME} has missing template`
 };
 $templateCache.put('templates/mock-list-extend-bottom.html', '');
 $templateCache.put('templates/mock-list-extend-top.html', '');

 $http.get(`templates/mock-list.html`)
 .then(
 response => {
 $templateCache.put('templates/mock-list.html', response.data);
 }
)
 .catch(catchErrorTemplate);
 })
 .controller('MockController', MockController)
 .service('MockService', MockService);

try {
 window.OpenLoyaltyConfig.modules.push(MODULE_NAME);
} catch (err) {
 throw `${MODULE_NAME} will not be registered`
}

And finally we have to register our module in frontend/src/appAdmin.js by adding:

...
require('./modules/admin.mock/module.js');
...
angular.module('OpenLoyalty', [
...
 'admin.mock'
...
]

Service and controller

Create service MockService.js with content:

export default class MockService {

 constructor(Restangular) {
 this.Restangular = Restangular;
 }

 getLevels(params) {
 return this.Restangular.all('level').getList(params);
 }
}

MockService.$inject = ['Restangular'];

Create controller MockController.js with content:

export default class MockController {
 constructor($scope, MockService, Flash, NgTableParams, $q, ParamsMap, $filter, DataService, PaginationSettings) {
 this.MockService = MockService;
 this.$scope = $scope;
 this.Flash = Flash;
 this.PaginationSettings = PaginationSettings;
 this.NgTableParams = NgTableParams;
 this.ParamsMap = ParamsMap;
 this.$q = $q;
 this.$filter = $filter;
 this.config = DataService.getConfig();

 this.loaderStates = {
 levelList: true,
 }
 }

 getData() {
 let self = this;

 self.tableParams = new self.NgTableParams({
 count: self.config.perPage
 }, {
 getData: function (params) {
 let dfd = self.$q.defer();

 self.loaderStates.levelList = true;
 self.MockService.getLevels(self.ParamsMap.params(params.url()))
 .then(
 res => {
 self.$scope.levels = res;
 let realTotal = res.total;
 params.realTotal = () => realTotal;
 params.total(self.PaginationSettings.getTotal(res.total));
 self.loaderStates.levelList = false;
 self.loaderStates.coverLoader = false;
 dfd.resolve(res);
 },
 () => {
 let message = self.$filter('translate')('xhr.get_levels_list.error');
 self.Flash.create('danger', message);
 self.loaderStates.levelList = false;
 self.loaderStates.coverLoader = false;
 dfd.reject();
 }
);

 return dfd.promise;
 }
 });
 }
}

MockController.$inject = ['$scope', 'MockService', 'Flash', 'NgTableParams', '$q', 'ParamsMap', '$filter', 'DataService', 'PaginationSettings'];

Templates

Create template mock-list.js in templates directory with content:

<box-loader loading="MockCtrl.loaderStates.coverLoader" cover="1" class="cover" delay="100"></box-loader>

<div class="heading" ng-init="MockCtrl.getData()">
 <h1>{{ "mock.heading" | translate }}</h1>
</div>
<div style="clear:both;"></div>

<div class="client-list box">
 <div class="box-title">
 <h1 class="text-left">{{ "mock.list" | translate }}</h1>
 </div>
 <div class="box-content">
 <box-loader loading="MockCtrl.loaderStates.mockList"></box-loader>
 <table ng-table="MockCtrl.tableParams" class="default" template-pagination="templatePagination.html">
 <tr ng-repeat="row in $data">
 <td data-title="'mock.name'|translate" sortable="'name'">

 </td>
 <td data-title="'mock.description'|translate"
 sortable="'description'"
 >

 </td>
 <td data-title="'Actions'">
 <button type="button" class="button button-secondary tiny"
 ui-sref="admin.edit-mock({levelId: row.id})">
 <i class="fa fa-pencil" aria-hidden="true"></i>
 </button>
 </td>
 </tr>
 </table>
 </div>
</div>

The last point is adding link to a navigation menu on left side. Let’s open file frontend/src/modules/admin.partials/templates/left-nav.html
and add:

 <i class="fa fa-tachometer" aria-hidden="true"></i>{{ "nav.mock" | translate }}
 <ul class="menu vertical nested">
 <a ui-sref="admin.mock-list">{{ "nav.mock" | translate }}

How to backup elasticsearch

To make backup of ElasticSearch we will use snapshot feature. You can read more about snapshots on ElasticSearch documentation (https://www.elastic.co/guide/en/elasticsearch/reference/2.2/modules-snapshots.html).

Preparing environment

ElasticSearch needs to place where backup will be stored.

	Create directory on container with correct permissions. You can attach volumen to bellow directory.

docker exec -it open_loyalty_elk bash
mkdir /usr/share/elasticsearch/backups
chown -R elasticsearch:elasticsearch /usr/share/elasticsearch/backups

	Change ElasticSearch configuration in order to set created directory as backup place. Open file /usr/share/elasticsearch/config/elasticsearch.yml and add bellow line.

path.repo: ["/usr/share/elasticsearch/backups"]

	Restart ElasticSearch container in order to reload configuration.

Making snapshot

	To make snapshot open ElasticSearch container and execute:

docker exec -it open_loyalty_elk bash
curl -X PUT "localhost:9200/_snapshot/my_backup/snapshot_1?wait_for_completion=true"

	You can check all available snapshots on ElasticSearch cluster:

docker exec -it open_loyalty_elk bash
curl -X GET "localhost:9200/_snapshot/my_backup/_all?pretty"

Restoring snapshot

	To restore backup we have to log in on container.

docker exec -it open_loyalty_elk bash

	Before making snapshot we have to make sure that all indexes are closed.

curl -X POST "localhost:9200/_all/_close"

	Restore snapshot.

curl -X POST "localhost:9200/_snapshot/my_backup/snapshot_1/_restore"

How to change the domain

There are many possible ways to run Open Loyalty as a production instance. The preferred way by Open Loyalty’s core
team is running Open Loyalty on Kubernetes cluster. It doesn’t matter if it is Amazon ESK, Google Kubernetes Engine or
your own k8s cluster. The idea is the same. The second way, is just to run Open Loyalty as fast as it can be and
make it available for everyone. I will focus on both options.

Using Docker and Docker Compose

The easiest way is to use Docker Compose and provided docker images with Open Loyalty’s code and infrastructure.
To change the domain, just add bellow environments to your php container in docker-compose.yml file.

services:
 php:
 ...
 environment:
 - api_url=http://openloyalty.dev/api
 - admin_url=http://openloyalty.dev:8182/
 - customer_url=http://openloyalty.dev:8183/
 - merchant_url=http://openloyalty.dev:8184/

Then change “openloyalty.dev” with your custom domain or public IP address. The next step is to restart containers
defined in docker-compose.

But how to create different domains for admin, client and pos?

First of all, remove from the docker-compose follow ports for Nginx container and leave only port 80.

ports:
 - "8182:3001"
 - "8184:3003"

The next step is to add a volume to the nginx container so it will mount virtual hosts files to the Nginx configuration directory.

volumes:
 - './prod/web:/etc/nginx/conf.d/front.conf'

Final configuration for Nginx container should look like

nginx:
 container_name: openloyalty_frontend
 image: divante/open-loyalty-web
 links:
 - php
 ports:
 - "80:80"
 volumes:
 - './prod/web:/etc/nginx/conf.d'
 command: bash -c "sed -i -e 's@"http://openloyalty.localhost/api"@'\"http://openloyalty.dev/api\"'@g' /var/www/openloyalty/front/config.js && nginx -g 'daemon off;'"

The last step is to adjust frontend.conf configuration file

server {
 listen 80;
 listen [::]:80;
 server_name admin.openloyalty.localhost www.admin.openloyalty.localhost;

 root /var/www/openloyalty/front;
 index admin/index.html;
 location ~* \.(?:js|css|jpg|jpeg|gif|png|svg|ico|pdf|html|htm)$ {
 }
}

server {
 listen 80;
 listen [::]:80;
 server_name pos.openloyalty.localhost www.pos.openloyalty.localhost;

 root /var/www/openloyalty/front;
 index pos/index.html;
 location ~* \.(?:js|css|jpg|jpeg|gif|png|svg|ico|pdf|html|htm)$ {
 }
}

Using k8s cluster

We recommend to use k8s for real production usage. The idea behind k8s is that it allows to mount a single file which
docker and docker-compose doesn’t.

Here is an example of config.yml file which has ConfigMap with content of config.js and Symfony config files.
This content will be used in the deployment file to replace existing files with configuration from ConfigMap.

Now we can create a deployment for PHP container. Most of the configuration is related to run image as a container and k8s
polices but take a look at volumeMounts and volumes. volumeMounts is where we mount volume named “parameters” to the
specific file in the container. In the volume section, volume name “parameters” is defined and it’s content is
get from ConfigMap at key “.env.prod”.

We change Open Loyalty configuration using our own configuration defined in ConfigMap and just replace file at the
container with our own file.

apiVersion: extensions/v1
kind: Deployment
metadata:
 labels:
 app: php
 name: php
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: php
 spec:
 imagePullSecrets:
 - name: registry
 containers:
 - image: registry-1.divante.pl:5000/openloyalty/fpm-framework:4.2.0
 name: php
 ports:
 - containerPort: 9000
 volumeMounts:

 ...

 - mountPath: /var/www/openloyalty/.env.prod
 name: parameters
 subPath: .env.prod

 ...
 restartPolicy: Always
 volumes:

 ...

 - name: parameters
 configMap:
 name: app
 items:
 - key: .env.prod
 path: .env.prod

 ...

The .env.prod file is not the only file we need to replace to change default domain “openloyalty.localhost”. The
second file is config.js file, but the idea is the same. The same volumeMounts replaces config.js file with volumne named
“config” and volume named “config” is created from the configMap under key “config.js”. The content is copied from configMap
to the config.js file.

apiVersion: extensions/v1
kind: Deployment
metadata:
 name: frontend
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: frontend
 spec:
 imagePullSecrets:
 - name: registry
 containers:
 - image: registry-1.divante.pl:5000/openloyalty/frontend:4.2.0
 name: openloyalty-frontend
 ports:
 - containerPort: 80
 volumeMounts:
 - mountPath: /var/www/openloyalty/front/config.js
 name: config
 subPath: config.js
 restartPolicy: Always
 volumes:
 - name: config
 configMap:
 name: app
 items:
 - key: config.js
 path: config.js

This is the general idea of how to change the domain using k8s and implementing it may be a little bit different
depending on which provider do you use: Amazon, Google, Alibaba or your own k8s instance.

How to change main language

English language is default language in OpenLoyalty for data and interfaces. In case of change main language you need
to adjust OpenLoyalty to new language.

Backend system translations

In order to translate system messages from backend (API) you need to create translations files in backend/app/Resources/translations
as well like for PL and EN. Create file messages.LOCALE.xlf and validators.LOCALE.xlf.

Frontend translations for interface and data

To creates new translations for interfaces in cockpits, open Settings/Translations and click Create new translations.
Fill in the form for your new language (locale code), mark new translations as default. In content field you have to put
translations for your languages according to EN structure. You can simple copy content from EN translations and translate it.
In some cases flush browser cache is required to reload new language in admin cockpit.

That’s all. Now frontend interface will use your translations and default language for data will use new language as well.
Make sure that required fields for default language are filled in translatable object like Campaigns, Levels etc.

[image: ../_images/change_translation_admin.png]

How to connect to elasticsearch

To connect to ElasticSearch you will first need to setup a service for example Amazon OpenSearch Service (successor to Amazon Elasticsearch Service)
along with fine-grained access control (https://docs.aws.amazon.com/opensearch-service/latest/developerguide/fgac.html).

Enable Basic Auth with HTTPS

1. Setup environment in .env.prod file.
Username and password are the one created for a master user (https://docs.aws.amazon.com/opensearch-service/latest/developerguide/fgac-walkthrough-basic.html).
Make sure to use port 443 for HTTPS connection.

ELK_HOST=https://search.amazonaws.com:443
ELK_USERNAME=user
ELK_PASSWORD=pass

	Setup parameters in parameters.yaml file. Add basicAuthentication key for elastica.

elastica:
 hosts:
 - '%env(ELK_HOST)%'
 basicAuthentication:
 - '%env(ELK_USERNAME)%'
 - '%env(ELK_PASSWORD)%'

How to enable LDAP authorization

Open Loyalty supports two authorization methods for admin: database and LDAP. Database authorization is default.

Note

LDAP authorization is only supported for administrator users

Note

If administrator authenticated successfully and account doesn’t exist in the database, then an account for

this admin will be created.

Enable LDAP

	Add these lines to .env.prod or create the file if it does not exist:

ADMIN_BASIC_AUTHORIZATION_ENABLED=false
ADMIN_LDAP_AUTHORIZATION_ENABLED=true

Note

You can enable database and LDAP authorization at the same time but this is not recommended.

	Set LDAP configuration in the same file

LDAP_HOST=ldap-server
LDAP_PORT=389
LDAP_PROTOCOL_VERSION=3
LDAP_BASE_DN=dc=example,dc=org
LDAP_SEARCH_DN=cn=admin,dc=example,dc=org
LDAP_SEARCH_PASSWORD=admin
LDAP_DN_STRING=cn={username},dc=example,dc=org

Development work

If you want to work with a mock LDAP server you can add services below to your docker-compose file. The first one is
LDAP server and the second is simple administrator panel to manage LDAP server.

ldap-server:
 container_name: open_loyalty_framework_ldap
 image: osixia/openldap:1.3.0
 ports:
 - 389:389
 - 636:636
 environment:
 LDAP_TLS: "false"

ldap-panel:
 container_name: open_loyalty_framework_ldap_panel
 image: osixia/phpldapadmin:0.9.0
 environment:
 PHPLDAPADMIN_LDAP_HOSTS: "ldap-server"
 PHPLDAPADMIN_HTTPS: "false"
 ports:
 - 6443:80
 depends_on:
 - ldap-server

How to schedule transactions import

Registering transactions via API is not always possible, and importing transactions from your systems manually
might be exhausting and may introduce delays in assigning points to customers.

The solution often is to schedule a transaction import from an external filesystem, eg. AWS S3 bucket.

Crontab

The system performs the transactions import as defined in crontab. To edit eg. file name, used file system
or if the system should automatically rename the file after import, edit your crontab file.

By default OL uses import_scheduled filesystem, transactions.xml filename and renames the file after import (-m option).

0 * * * * su www-data -c "flock -w 0 /var/www/openloyalty/var/locks/transaction_scheduled_import.lock /usr/local/bin/php /var/www/openloyalty/bin/console --env=prod oloy:transaction:import -m import_scheduled:transactions.xml > /var/www/openloyalty/var/log/cron_ol_transaction_scheduled_import.log 2>&1"

Note

You can multiply this line to set up different schedules, for example to use different file names for different
branches of your network.

OL configuration

You can find settings of import_scheduled filesystem in parameters.yml file, adapter_import_scheduled key.
The value might be import_file_local, taking the import file from /var/www/openloyalty/var/import folder,
which can be set up as a shared volume in docker/kubernetes,
or import_file_s3, which uses a folder named import_file_local on the S3 bucket shared with other adapters
and configured via amazon_s3.* parameters.

Alternatively, you might change the import filesystem adapter through adapter_import_file parameter.
This changes the place where files imported via web interface are saved, too.
If you use import filesystem to import your transactions on cron schedule, rememeber to change the command
in crontab to use import: file name prefix instead of import_scheduled:.

How to work with queues

OpenLoyalty uses queue system to process tasks in an asynchronous way. We have chosen RabbitMQ as a queue provider.
In case you need to create a process which uses queue you have to create a consumer and a producer. The producer is
responsible for either creating a request to run the process or running this process immediately when queue processing
is disabled. The consumer is a class which processes elements from queue.

Configuration

In Symfony config files a simple default configuration is defined. Administrators can enable the queue by setting queue_enabled to true.

queue_enabled: false
queue_host: queue
queue_port: 5672
queue_user: guest
queue_password: guest

Example how to use queue along with CQRS

Below you may find a description on how to a producer for recreating segments. This is a real use case from the application.

1. You don’t have to create a consumer. The general Consumer class already exists at src/OpenLoyalty/Component/Core/Infrastructure/Queue/RabbitMq/Consumer.php
This Consumer uses CommandBus to dispatch Commands taken from queue.

2. Next, create a producer for sync and async processing. Classes OpenLoyaltyComponentSegmentInfrastructureQueueProducer
should implement a specific interface SegmentProducerInterface). The only required dependency is on the queue connection that
implements QueueProducerConnectionInterface

Now, you have to configure connection and Producer class in the container.

oloy.segment.rabbitmq.connection:
 class: OpenLoyalty\Infrastructure\Core\Queue\RabbitMq\Producer
 arguments:
 $connection: '@old_sound_rabbit_mq.segment_producer'
 calls:
 - [setLogger, ['@logger']]

OpenLoyalty\Component\Segment\Infrastructure\Queue\Producer:
 arguments:
 $queueProducerConnection: '@oloy.segment.rabbitmq.connection'
 $queueEnabled: '%queue_enabled%'

	Third step is to create configuration of the connection between application and the queue system (RabbitMq in our case).

old_sound_rabbit_mq:
 producers:
 segment:
 connection: default
 exchange_options: {name: 'segment', type: direct}
 enable_logger: true
 consumers:
 segment-dead-letters:
 connection: default
 exchange_options: { name: 'segment-dead-letters', type: fanout }
 queue_options: { name: 'segment-dead-letters' }
 callback: OpenLoyalty\Infrastructure\Core\Queue\RabbitMq\DeadLetter
 multiple_consumers:
 segment:
 connection: default
 exchange_options: {name: 'segment', type: direct}
 enable_logger: true
 queues:
 recreate-segment:
 name: recreate-segment
 arguments:
 x-dead-letter-exchange: ['S', 'segment-dead-letters']
 x-dead-letter-routing-key: ['S', 'segment-dead-letters']
 callback: OpenLoyalty\Infrastructure\Core\Queue\RabbitMq\Consumer
 routing_keys:
 - recreate-segment

The name of this service MUST be of old_sound_rabbit_mq.{producer_attribute_value}_producer format.

4. Finally, the consumer should be registered as a supervisord worker. Add your configuration to
the directories named: docker/dev/php/conf/supervisord/conf.d/ and docker/prod/php/conf/supervisord/conf.d/

Example of such a file is docker/dev/php/conf/supervisord/conf.d/segment-consumer.conf.

Run the consumer manually

In order to run the consumer manually in the console, type:

bin/console rabbitmq:multiple-consumer segment

Example how to use queue without CQRS

The above example strongly uses CQRS pattern and dispatches commands to the command bus. However, sometimes you need a custom consumer for unusual cases.

Below you may find a description on how to create both consumer and a producer for sending emails. This is also a real use case from the application.

1. First, create a consumer. This class must implement OldSoundRabbitMqBundleRabbitMqConsumerInterface.
The consumer must be registered in container as simple service with injected dependencies.

In this case

OpenLoyalty\Infrastructure\Messaging\Queue\RabbitMq\EmailConsumer:
 arguments:
 $logger: '@logger'
 $mailer: '@oloy.mailer'

2. Next, create a producer. This step is the same like in the above example with CQRS. So let’s see how the configuration
looks like for sending emails.

oloy.email.rabbitmq.connection:
 class: OpenLoyalty\Infrastructure\Core\Queue\RabbitMq\Producer
 arguments:
 $connection: '@old_sound_rabbit_mq.email_producer'
 calls:
 - [setLogger, ['@logger']]

OpenLoyalty\Infrastructure\Messaging\Queue\RabbitMq\EmailProducer:
 arguments:
 $mailer: '@oloy.mailer'
 $queueProducerConnection: '@oloy.email.rabbitmq.connection'
 $queueEnabled: '%queue_enabled%'

Nothing different than in the previous example.

3. Third step is to create configuration of the connection between application and the queue system (RabbitMq in our case).
In this case, the only difference is the “callback” for multiple consumers. We don’t use general Consumer from Core
to dispatch commands to the command bus but rather our own implementation from the step 1.

old_sound_rabbit_mq:
 producers:
 email:
 connection: default
 exchange_options: {name: 'email', type: direct}
 enable_logger: true
 consumers:
 email-dead-letters:
 connection: default
 exchange_options: { name: 'email-dead-letters', type: fanout }
 queue_options: { name: 'email-dead-letters' }
 callback: OpenLoyalty\Infrastructure\Core\Queue\RabbitMq\DeadLetter
 multiple_consumers:
 email:
 connection: default
 exchange_options: {name: 'email', type: direct}
 enable_logger: true
 queues:
 email-queue:
 name: email-queue
 arguments:
 x-dead-letter-exchange: ['S', 'email-dead-letters']
 x-dead-letter-routing-key: ['S', 'email-dead-letters']
 callback: OpenLoyalty\Infrastructure\Messaging\Queue\RabbitMq\EmailConsumer
 routing_keys:
 - email-queue

The name of this service MUST be of old_sound_rabbit_mq.{producer_attribute_value}_producer format.

4. Finally, the consumer should be registered as a supervisord worker. Add your configuration to
the directories named: docker/dev/php/conf/supervisord/conf.d/ and docker/prod/php/conf/supervisord/conf.d/

Example of such a file is docker/dev/php/conf/supervisord/conf.d/segment-consumer.conf.

Run the consumer manually

In order to run the consumer manually in the console, type:

bin/console rabbitmq:multiple-consumer email

How to create a translatable field

Translatable fields let you store objects’ data in several languages. If you have a translatable field and want to retrieve the data you saved in a given language you have to pass a request parameter named _locale to the API endpoint, with locale code given defined in the admin panel.

Let’s say you want to add a translatable field containing a brand name to the API. To do that, add a translatable field type to the form:

<?php
 $builder->add('translations', TranslationsType::class, [
 'required' => true,
 'fields' => [
 'brandName' => [
 'field_type' => TextType::class,
],
],
]);

Next, we need to create a mapping for entity translation. Because brandName is a field of Campaign objects, we create a CampaignTranslation entity. Here is a Doctrine definition:

OpenLoyalty\Domain\Campaign\CampaignTranslation:
 type: entity
 fields:
 brandName:
 type: text
 nullable: true
 column: brand_name

and entity class body with FallbackTranslation trait:

Next we need to add FallbackTranslatable trait in the OpenLoyaltyDomainCampaignCampaign class

and modify setFromArray method if it exists:

You also need to add translation setters and getters, which will be responsible for modifying and returning the translated data

/**
 * @return string|null
 */
public function getBrandName(): ?string
{
 return $this->translateFieldFallback(null, 'brandName')->getBrandName();
}

/**
 * @param string|null $brandName
 */
public function setBrandName(?string $brandName): void
{
 $this->translate(null, false)->setBrandName($brandName);
}

API

Used library

We’re using a few libraries to serve RESTful API, it’s automatically generated documentation and JWT Tokens used
to authenticate a user. More information about API, requests and response is available at
here [http://open-loyalty.readthedocs.io/en/latest/api/index.html].

FOSRestBundle

This bundle provides various tools to rapidly develop RESTful API’s & applications with Symfony. Features include:
A View layer to enable output and format agnostic Controllers
A custom route loader to generate url’s following REST conventions
Accept header format negotiation including handling for custom mime types
RESTful decoding of HTTP request body and Accept headers
Exception controller for sending appropriate HTTP status codes

https://symfony.com/doc/master/bundles/FOSRestBundle/index.html

NelmioDocAPI

The NelmioApiDocBundle bundle allows you to generate documentation in the OpenAPI (Swagger) format and provides a sandbox to interactively browse the API documentation.

https://symfony.com/doc/current/bundles/NelmioApiDocBundle/index.html

LexikJWTAuthenticationBundle

This bundle provides JWT (Json Web Token) authentication for your Symfony API.

https://github.com/lexik/LexikJWTAuthenticationBundle/blob/master/Resources/doc/index.md

JWTRefreshTokenBundle

The purpose of this bundle is manage refresh tokens with JWT (Json Web Tokens) in an easy way. This bundles uses LexikJWTAuthenticationBundle. At the moment only supports Doctrine ORM.

https://github.com/gesdinet/JWTRefreshTokenBundle

RESTful API

Not described yet.

JWT tokens

Not described yet.

How to authenticate

Not described yet.

How to use

Not described yet.

Contexts

Open Loyalty has context which is basically three different types of users.

There is an admin context who is responsible for managing whole loyalty platform.

Second context is a customer context, a person who registered to the loyalty program and the third last context is a
seller. It’s usually a merchant with physical store that is handling customer.

Each context, an therefore each user, has different permissions and can use different API endpoints.

API assumptions

API and it’s naming follows convention from contexts by prefixing their names. So only the customer can
use /api/customer and seller can use /api/seller.

If an endpoint is prefixed with /api/admin or is not prefixed with any context, by default is available only
for an administrator.

However, there are some exceptions from this convention. The best examples are endpoints from the UserBundle and
prefixed with /api/customer. Most of them are available only in the administrator context,
but some of them are also available for a customer like endpoint /api/customer/{customer}.
It’s available for an administrator to view any customer but it’s also available for a customer to view only
his own data. It’s restricted in the code.

Why I see 404?

Open Loyalty uses /api for all API endpoints so there is no / route in application. If route is not found,
then by default 404 is returned.

Cockpits

Admin Cockpit

Not described yet

Client Cockpit

Not described yet

POS Cockpit

Not described yet

CQRS

CQRS stands for Command Query Responsibility Segregation. It’s a pattern that was described by Greg Young. At its
heart is the notion that you can use a different model to update information than the model you use to read
information.

[image: ../../_images/cqrs.png]
You can read more on CQRS pattern on Martin Fowler’s website here [https://martinfowler.com/bliki/CQRS.html].

Domain Driven Design

Domain-Driven Design is a software development methodology for tackling complex software projects to deliver an
end-product that meets the goals of the organization. In fact, Domain-Driven Design promotes focusing the project
on an evolving core model.

Event Sourcing

Event Sourcing ensures that all changes to the state of application’s parts that use it are stored as a sequence of
events. Not only can we query these events, we can also use the event log to reconstruct past states,
and as a foundation to automatically adjust the state to cope with retroactive changes.

[image: ../../_images/event_sourcing.png]
To implement event sourcing we use an external library called Broadway [https://github.com/broadway/broadway].

Not everything in Open Loyalty is event sourced, and this behaviour is intended.
Event sourcing is used in change-sensitive parts of the application where full rewind capacity is needed, for example
transactions, points and customer data changes.

To read about Event Sourcing’s pros and cons, go to Martin Fowler’s website here [https://martinfowler.com/eaaDev/EventSourcing.html].

Events

There are three types of events dispatched in Open Loyalty, commands, events and system events.

Commands

It’s a user intention, it’s something that we want to happen but may be rejected on any reason, ie. because data
is not valid. To put it simply, it says “do something” to the software.

Events

Events have happened. It represents something that has happened and it cannot be rejected. It’s a consequence of
executing a command.

System events

Additional type of events that are thrown during executing a command by command handler and may be used to trigger
another commands. They’re also useful to separate concerns.

List of all events

Fixtures

Fixtures are used mainly for testing, but also for setting up application for a first use or for demonstration purposes.

There are tree types of fixtures used in Open Loyalty.

Testing fixtures

It puts a software in certain state so we can test is application working as expected.

To load testing data run:

$ bin/console doctrine:fixtures:load --env=test -n

Setup fixtures

Another type of fixtures is called “setup”. It’s meant to load a smallest possible amount of data to run
loyalty program correctly.

To load initial data run:

$ bin/console doctrine:fixtures:load -n -vvv

Demo fixtures

Last type of fixtures is demo. It loads a large amount of data to show full potential of Open Loyalty.
So you will see a lot of customers, points, transactions and so on. It’s really useful when you want to
present a software to your clients and you need sample data.

To load demonstration data run:

$ bin/console doctrine:fixtures:load --fixtures src/OpenLoyalty/Bundle/DemoBundle/_DataFixtures/ORM/ -n

Common tasks

There is also another, simpler way to initialize Open Loyalty. We use a tool called phing which is a great tool
to run many commands in sequences. We prepared a few useful commands to automate some common tasks and make them easier.

Here are a few most used commands, but if you curious about more, check the
build.xml <http://gitlab.divante.pl/open-loyalty/open-loyalty/blob/develop/backend/build.xml> file

Initialize Open Loyalty, load testing data and run unit & integration tests and check coding standard at the end.

$ phing ci-setup-test

Initialize Open Loyalty and load only required data

$ phing basic-setup

Initialize Open Loyalty and load test data

$ phing setup

Initialize Open Loyalty and load demo data

$ phing demo

Initialize Open Loyalty and run specific tests

$ phing test -Dsrc=src/OpenLoyalty/Bundle/TransactionBundle/Tests/Controller/Api/TransactionControllerTest.php

Run specific tests without initialization

$ phing test -Dsrc=src/OpenLoyalty/Bundle/TransactionBundle/Tests/Controller/Api/TransactionControllerTest.php -Dno-build

Open Loyalty uses JWT tokens to authenticate a user in the system but also to send all required data between requests.
As we’re focused on the security, this token is encrypted using RSA keys which you should generate by yourself.
To make it easier for you, we prepared a command that automates this task for you.

$ phing generate-jwt-keys

Overview

Fullstack Symfony

Open Loyalty is based on Symfony, which is a leading PHP framework to create web applications. Using Symfony
allows developers to work better and faster by providing them with certainty of developing an application that
is fully compatible with the business rules, that is structured, maintainable and upgradable, but also it allows
to save time by providing generic re-usable modules.

Doctrine

Doctrine is a family of PHP libraries focused on providing data persistence layer. The most important are the
object-relational mapper (ORM) and the database abstraction layer (DBAL). One of Doctrine’s key features is the
possibility to write database queries in Doctrine Query Language (DQL) - an object-oriented dialect of SQL.

To learn more about Doctrine - see their documentation.

Boradway

Broadway is a project providing infrastructure and testing helpers for creating CQRS and event sourced applications.
Broadway tries hard to not get in your way. The project contains several loosely coupled components that can be used
together to provide a full CQRSES experience.

To find more about Broadway see their documentation <https://broadway.github.io/broadway/>_.

Architecture

[image: ../../_images/overview.png]

Admin cockpit

The frontend application that allows an administrator to manage the loyalty application.

Client cockpit

A frontend application for end customers. It allows customers to check their profile, points, transactions history
and redeem reward.

POS Cockpit
POS stands for Point-of-sale. It’s a physical store where you can buy stuff. This cockpit is a user interface for
merchants to register a customer in loyalty program or spend points to reduce purchase amount.

3rd party software
Thanks to the separation between frontend and backend any third party software can integrate with Open Loyalty and
benefit from it. You can even replace existing cockpits with your own solution like mobile application for end customers.

API

Our API uses the REST approach.

Bundles

It’s a place where a business logic from the components is integrated with used Symfony Framework. By separating
business logic from the framework, it’s easily to focus and maintain business aspects of the application and the
integration with framework.

Components

It’s a heart of our software. Here lies are business rules of the loyalty program. Components have been created
with Domain Driven Design in mind. So if you’re familiar with this concept you can find here know to you patterns
like domain models and infrastructure objects.

Translations

Open Loyalty supports multi language in interface (admin, customer panel) and user data (levels, campaigns, campaign categories).

Languages

Administrator has possibility to manages available languages in Translations settings. One of these languages should be marked as default. Default languages in used to translate interface.

Translatable data

Some entities like levels, campaigns and category campaign have build-in multi language support. Administrator can translate some fields using Open Loyalty administrator panel or API.

By default API returns data using default language, but user may change current language in API using _locale parameter passing to request. If some data in given language is not defined then fallback to default language approach will be used.

Exploring Elasticsearch’s indices

You can preview indices as well as documents by executing HTTP requests to the Elasticsearch REST API.
To simplify exploring ES indices you may want to use Google Chrome extension below.

ElasticSearch Head

Plugin for chrome, simple and fast. See the website [https://chrome.google.com/webstore/detail/elasticsearch-head/ffmkiejjmecolpfloofpjologoblkegm], or github [https://github.com/TravisTX/elasticsearch-head-chrome].

RabbitMQ Management

It is always more readable when you can preview what is really happening on the Queue’s server side.

RabbitMQ Management panel

Our docker dev-environment configuration contains definition for a web-based RabbitMQ management panel which is
accessible on default gateway IP for docker (localhost for linux and 192.168.X.X IP for windows) on port 8672
(ie. http://localhost:8672 or http://192.168.x.x:8672).

Default credentials are guest / guest

[image: ../../_images/rabbitmq.png]

Redis

Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache and message broker.

Enabling Redis in OL

Our default configuration uses file system cache. If you want to use redis you have to change symfony configuration and
build own docker images.

Open config/packages/prod/config.yaml and uncomment snc_redis and framework sections.

Make sure that working redis instance is listening on host and port defined in Symfony config.

Unit & integration tests in PHPStorm

This guideline is about how to configure PHPStorm to run unit & integration tests locally.

Requirements

	docker-compose (>= 1.21)

	docker (>= 18.06)

	PHPStorm (>= 2018.1)

Setup

	Enter settings: File → Settings → Build, Execution, Deployment → Docker

[image: ../../_images/tests_1.png]

	File → Settings → Languages & Frameworks → PHP

	Configure CLI Interpreter

[image: ../../_images/tests_2.png]

	Configure PHP settings

[image: ../../_images/tests_3.png]

	File → Settings → Languages & Frameworks → PHP → Test Frameworks and then configure PHPUnit by adding Remote Interpreter

[image: ../../_images/tests_4.png]

	Run/Debug Configuration

[image: ../../_images/tests_5.png]
Now you are able to execute all tests via IDE using green Play button or Run menu.

Varnish

Varnish Cache [https://varnish-cache.org/] is a web application accelerator also known as a caching HTTP reverse proxy.
Varnish speeds up responses from the server tremendously and helps improving performance of OpenLoyalty for clients who are
going to run OpenLoyalty for huge number of customers. Idea is simple. Backend application sends cache headers and based
on those, Varnish executes cache actions.

Technical details

Open Loyalty uses FOSHttpCacheBundle [https://github.com/FriendsOfSymfony/FOSHttpCacheBundle] in order to integrate Varnish
with OpenLoyalty as a proxy client. Additionally this library use FOSHttpCache [https://github.com/FriendsOfSymfony/FOSHttpCache]
which is responsible for controlling cache headers passed to proxy clients and invalidating cached objects.

Varnish is the first layer for the network traffic (after tool responsible for resolving HTTPS) and listening on 80 port.
Each request is passed to Varnish and then, if needed, forwarded to backend application (in order to refresh cache). Varnish is
very advanced and each operation flow can be managed by providing configuration files (Vcl files are located in docker/base/varnish).
Open Loyalty provides default configuration which is compatible with used Symfony bundles, but you can adjust it to your own needs.

Second place where http cache can be configured is symfony configuration. The dev/http_cache.yml file is used
for developer mode (disable cache) and prod/http_cache.yml contains simple configuration caches for several
endpoints. This file can be expanded according to FOSHttpCacheBundle documentation [https://foshttpcachebundle.readthedocs.io/en/latest/reference.html]

The last place is parameters.yaml where you can find keys below:

varnish_host - host on which Varnish is listening (port can be added to host)
http_cache_default_ttl - time to live (for objects cached in proxy client).
http_cache_invalidation - indicates whether invalidation feature is enabled. If it is disabled then cache will be
expired only after TTL time.
http_cache_base_url - host which is main gateway for user’s OpenLoyalty.
http_cache_debug_headers - indicates whether backend and Varnish should add debug headers to responses. It helps to
identify that page was cached or fetched from backend.

Enabling Varnish

By default Varnish is enabled on production mode (if you use our docker files), but http_cache_default_ttl value
in parameters.yml should be increased to higher value and http_cache_invalidation should be enabled. Make sure that
traffic is passed to Varnish on 80 port.

If you want to use external Varnish services (like Varnish on AWS) you should configure it using our VCL configuration
and forward traffic to Varnish.

Xebug with PHP Storm

Xdebug is a php extension which is included in developer’s environment built with docker (described in installation section).
It can be configured next to IDE, but it’s more valuable to get xdebug synchronized with your IDE (PHP Storm in this case).

IDE configuration

1. Set the right port

In PHP Storm settings (Languages & Frameworks / PHP / Debug / Xdebug / Debug port) set port to 10001.

Note

Default port 9000 is being used by PHP container

2. Create remote debug

In settings (Run/Debug/Edit configurations) add new Configuration called PHP Remote Debug.

3. Create new server

Create a new server by clicking … using settings like in the picture below

[image: ../../_images/xdebug_1.png]

4. Select created server

Select newly created server and save.

[image: ../../_images/xdebug_2.png]

Note

xdebug setup for php dev container is set up in file located in docker/dev/php/xdebug.ini

Debugging through php-fpm (front)

Should work automatically when Start Listening for PHP Debug connections option is switch on.

Debugging through php-cli (backend)

It can be done after doing a few steps.

1) run command docker inspect open_loyalty_backend | grep Gateway
the output should contain a value of Gateway key. Copy this IP.

2) on running php container run this command:
export PHP_IDE_CONFIG="serverName=localhost"

Note

notice the serverName value is localhost - the same value as configured in the step called Create new server

	If you have switched listening debug option on - you can run any php command with required prefixes, here’s an example:

php -dxdebug.remote_host=172.18.0.1 -dxdebug.remote_autostart=On bin/console

Installation

Development environment

This project has full support for running in Docker. Make sure that you have installed docker and docker-composer and
you are using compatible environment.

Use Open Loyalty skeleton application for Open Loyalty customization. Composer is responsible for providing Open Loyalty
Framework in given version which can be overridden by developers and adjusted to your business requirements. The latest
version of Open Loyalty is available on our packagist (access only for Enterprise Clients).

You can find more details how to override Symfony components in documentation [https://symfony.com/doc/4.4/bundles/override.html].

Since 4.1, frontend project is built independently from the backend.

Backend (API)

Open skeleton project and build base images:

./docker/base/build_dev.sh

and run containers:

docker-compose -f docker/docker-compose.dev.yml --project-name=PROJECT_NAME up

Then use another command to setup database, Elasticsearch and load some demo data:

docker-compose -f docker/docker-compose.dev.yml --project-name=PROJECT_NAME exec --user=www-data php phing setup

After the example data is loaded, the following should be available:

	http://openloyalty.localhost/api - RESTful API port

	http://openloyalty.localhost/doc - swagger-like API doc

	http://openloyalty.localhost/api/healthcheck - Health check status (return 204 means OK)

Before you start using Open Loyalty you need to define hosts in your local environment.
Add host openloyalty.localhost as 127.0.0.1 in your system configuration file.
On the Linux it would be /etc/hosts.

Note

After running docker-compose up you may wonder when it’s ready to use because you’ve got a message that keeps
appearing all the time. It’s perfectly fine to see message open_loyalty_mail | [APIv1] KEEPALIVE /api/v1/events.
This message is shown by MailHog which is listening for incoming e-mail messages. Open Loyalty in the development mode
doesn’t send e-mails to the wider network – all e-mails are caught by MailHog. To learn more about
MailHog, click here [https://github.com/mailhog/MailHog].

If you don’t want to see messages from running containers run a docker-compose as a daemon docker-compose up -d

Frontend

Open frontend project and build base images:

./docker/base/build_dev.sh

and run containers:

docker-compose -f docker/docker-compose.dev.yml --project-name=PROJECT_NAME up

Application should be available under slightly different URLs:

	http://openloyalty.localhost:8081/admin - the administration panel

	http://openloyalty.localhost:8081/pos - the merchant panel

Preparing docker images

Before deploy application in production you need to build docker images. Currently we support
Gitlab CI [https://about.gitlab.com/product/continuous-integration/] in order to build images automatically. If you
need to build images in different way then you should ADJUST and execute bellow commands:

API (from backend project)
docker build -t openloyalty/api-NAME:VERSION -f ./docker/prod/web/api-dockerfile .;

FPM (from backend project)
docker build -t openloyalty/fpm-NAME:VERSION -f ./docker/prod/php/fpm-dockerfile .;

WORKER (from backend project)
docker build -t openloyalty/worker-NAME:VERSION -f ./docker/prod/php/worker-dockerfile .;

FRONTEND (from frontend project)
docker build -t openloyalty/frontend-NAME:VERSION -f ./docker/prod/frontend/frontend-dockerfile .;

Kubernetes

We recommend running Open Loyalty projects in production using docker orchestration system like Kubernetes.

Read more about deploying application using Kubernetes here.

Kubernetes

Overview

Kubernetes is a portable, extensible, open-source platform for managing containerized workloads and services,
that facilitates both declarative configuration and automation. It has a large, rapidly growing ecosystem.
Kubernetes services, support, and tools are widely available.

We recommend kubernetes as a production environment. Because of different clients’ requirements we are not able to
provide the best configuration and each client should adjust configuration to their needs.

In this document we share general Kubernetes manifests skeleton which is runnable in Minikube. If you want to deploy Open Loyalty on
AWS you have to adjust these scripts. For example you have to replace services as standalone containers to external
services provided by AWS.

Manifests

Credentials for docker registry used in other manifests

apiVersion: v1
data:
 .dockerconfigjson: __REPLACE_IT__
kind: Secret
metadata:
 name: registry
 namespace: openloyalty
type: kubernetes.io/dockerconfigjson

Configuration files for services (e.g. parameters.yml for Symfony)

apiVersion: v1
kind: ConfigMap
metadata:
 name: app
 namespace: openloyalty
data:
 config.js: |-
 const config = {
 "apiUrl": "http://api.example.com/api",
 "dateFormat": "YYYY-MM-DD",
 "dateTimeFormat": "YYYY-MM-DD HH:mm",
 "perPage": 20,
 "debug": false,
 "modules": []
 };
 window.OpenLoyaltyConfig = config;
 .env.prod: |
 APP_ENV=prod
 APP_SECRET=__REPLACE_IT__
 RABBITMQ_URL=amqp://guest:guest@rabbitmq:5672
 DATABASE_URL=pgsql://openloyalty:openloyalty@db:5432/openloyalty
 DATABASE_VERSION='9.6'
 MAILER_URL=smtp://mail:1025
 GELF_SERVER=logstash
 GELF_PORT=12201
 ELK_HOST=elk:9200
 VARNISH_HOST=varnish
 VARNISH_CACHE_BASE_URL=localhost
 VARNISH_TTL=30
 VARNISH_INVALIDATION=true
 VARNISH_DEBUG=false
 REDIS_HOST=redisserver
 REDIS_PORT=6379

 api_url=http://openloyalty.localhost/api
 admin_url=http://openloyalty.localhost:8182/
 customer_url=http://openloyalty.localhost:8183/
 merchant_url=http://openloyalty.localhost:8184/
 reset_password_url="#!/password/reset"
 frontend_activate_account_url="#!/customer/panel/customer/registration/activate"
 frontend_invitation_url="#!/register/"

apiVersion: v1
kind: ConfigMap
metadata:
 name: php
 namespace: openloyalty
data:
 www.conf: |
 [www]
 user = www-data
 group = www-data
 listen = 127.0.0.1:9000
 pm = dynamic
 pm.max_children = 80
 pm.start_servers = 15
 pm.min_spare_servers = 15
 pm.max_spare_servers = 30

apiVersion: v1
kind: ConfigMap
metadata:
 name: varnish
 namespace: openloyalty
data:
 settings.vcl: |
 import directors;

 backend default_server {
 .host = "api";
 .port = "80";
 .max_connections = 300;

 .first_byte_timeout = 300s;
 .connect_timeout = 5s;
 .between_bytes_timeout = 2s;
 }

 acl purge {
 # ACL we'll use later to allow purges
 "localhost";
 "127.0.0.1";
 "::1";
 "php";
 "api";
 }

 sub vcl_init {
 new vdir = directors.round_robin();
 vdir.add_backend(default_server);
 }

Persistent volumes

kind: PersistentVolume
apiVersion: v1
metadata:
 name: database-pv
 namespace: openloyalty
spec:
 storageClassName: manual
 capacity:
 storage: 20Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: "/data/openloyalty/database"
 type: DirectoryOrCreate

kind: PersistentVolume
apiVersion: v1
metadata:
 name: elasticsearch-pv
 namespace: openloyalty
spec:
 storageClassName: manual
 capacity:
 storage: 25Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: "/data/openloyalty/elasticsearch"
 type: DirectoryOrCreate

kind: PersistentVolume
apiVersion: v1
metadata:
 name: logs-pv
 namespace: openloyalty
spec:
 storageClassName: manual
 capacity:
 storage: 5Gi
 accessModes:
 - ReadWriteMany
 hostPath:
 path: "/data/openloyalty/logs"
 type: DirectoryOrCreate

kind: PersistentVolume
apiVersion: v1
metadata:
 name: jwt-pv
 namespace: openloyalty
spec:
 storageClassName: manual
 capacity:
 storage: 5Gi
 accessModes:
 - ReadWriteMany
 hostPath:
 path: "/data/openloyalty/jwt"
 type: DirectoryOrCreate

kind: PersistentVolume
apiVersion: v1
metadata:
 name: uploads-pv
 namespace: openloyalty
spec:
 storageClassName: manual
 capacity:
 storage: 200Mi
 accessModes:
 - ReadWriteMany
 hostPath:
 path: "/data/openloyalty/uploads"
 type: DirectoryOrCreate

kind: PersistentVolume
apiVersion: v1
metadata:
 name: rabbitmq-pv
 namespace: openloyalty
spec:
 storageClassName: manual
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteMany
 hostPath:
 path: "/data/openloyalty/rabbitmq"
 type: DirectoryOrCreate

Persistent volumes claims

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: database-volume
 namespace: openloyalty
 labels:
 storage-tier: database
spec:
 storageClassName: manual
 resources:
 requests:
 storage: 20Gi
 accessModes:
 - ReadWriteOnce

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: elasticsearch-volume
 namespace: openloyalty
 labels:
 storage-tier: elasticsearch
spec:
 storageClassName: manual
 resources:
 requests:
 storage: 25Gi
 accessModes:
 - ReadWriteOnce

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: logs-volume
 namespace: openloyalty
 labels:
 storage-tier: logs
spec:
 storageClassName: manual
 resources:
 requests:
 storage: 5Gi
 accessModes:
 - ReadWriteMany

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: jwt-volume
 namespace: openloyalty
 labels:
 storage-tier: jwt
spec:
 storageClassName: manual
 resources:
 requests:
 storage: 5Gi
 accessModes:
 - ReadWriteMany

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: uploads-volume
 namespace: openloyalty
 labels:
 storage-tier: uploads
spec:
 storageClassName: manual
 resources:
 requests:
 storage: 200Mi
 accessModes:
 - ReadWriteMany

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: rabbitmq-volume
 namespace: openloyalty
 labels:
 storage-tier: rabbitmq
spec:
 storageClassName: manual
 resources:
 requests:
 storage: 1Gi
 accessModes:
 - ReadWriteMany

Deployment and services. This file contains manifests for all services which are required to run OpenLoyalty and additional ones
like Kibana, Logstash etc. You can comment it.

##########
Database
##########
apiVersion: extensions/v1
kind: Deployment
metadata:
 name: db
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: db
 spec:
 containers:
 - env:
 - name: POSTGRES_DB
 value: openloyalty
 - name: POSTGRES_PASSWORD
 value: openloyalty
 - name: POSTGRES_USER
 value: openloyalty
 image: postgres:12.6-alpine
 name: db
 ports:
 - containerPort: 5432
 volumeMounts:
 - mountPath: /var/lib/postgresql/data
 name: database
 restartPolicy: Always
 volumes:
 - name: database
 persistentVolumeClaim:
 claimName: database-volume

apiVersion: v1
kind: Service
metadata:
 name: db
 namespace: openloyalty
 labels:
 app: db
spec:
 ports:
 - port: 5432
 targetPort: 5432
 selector:
 app: db

##########
Frontend
##########
apiVersion: extensions/v1
kind: Deployment
metadata:
 name: frontend
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: frontend
 spec:
 imagePullSecrets:
 - name: registry
 containers:
 - image: registry-1.divante.pl:5000/openloyalty/frontend:4.2.0
 name: openloyalty-frontend
 ports:
 - containerPort: 80
 volumeMounts:
 - mountPath: /var/www/openloyalty/front/config.js
 name: config
 subPath: config.js
 restartPolicy: Always
 volumes:
 - name: config
 configMap:
 name: app
 items:
 - key: config.js
 path: config.js

apiVersion: v1
kind: Service
metadata:
 name: frontend-admin
 namespace: openloyalty
 labels:
 app: frontend-admin
spec:
 ports:
 - name: http
 port: 3001
 targetPort: 3001
 selector:
 app: frontend

apiVersion: v1
kind: Service
metadata:
 name: frontend-pos
 namespace: openloyalty
 labels:
 app: frontend-pos
spec:
 ports:
 - name: http
 port: 3003
 targetPort: 3003
 selector:
 app: frontend

#####
API
#####
apiVersion: extensions/v1
kind: Deployment
metadata:
 name: api
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: api
 spec:
 imagePullSecrets:
 - name: registry
 containers:
 - image: registry-1.divante.pl:5000/openloyalty/api-framework:4.2.0
 name: openloyalty-api
 ports:
 - containerPort: 80
 volumeMounts:
 - mountPath: /var/www/openloyalty/front/config.js
 name: config
 subPath: config.js
 restartPolicy: Always
 volumes:
 - name: config
 configMap:
 name: app
 items:
 - key: config.js
 path: config.js

apiVersion: v1
kind: Service
metadata:
 name: api
 namespace: openloyalty
 labels:
 app: api
spec:
 ports:
 - port: 80
 targetPort: 80
 selector:
 app: api

#######
PWACC
#######
apiVersion: extensions/v1
kind: Deployment
metadata:
 name: pwacc
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: pwacc
 spec:
 imagePullSecrets:
 - name: registry
 containers:
 - image: registry-1.divante.pl:5000/openloyalty/pwacc:4.2.0
 name: openloyalty-pwacc
 env:
 - name: OL_HOST
 value: api.example.com
 - name: OL_API_PROTOCOL
 value: http
 - name: NODE_ENV
 value: production
 ports:
 - containerPort: 80
 restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
 name: pwacc
 namespace: openloyalty
 labels:
 app: pwacc
spec:
 ports:
 - port: 3004
 targetPort: 80
 selector:
 app: pwacc

########
PHPFPM
########
apiVersion: extensions/v1
kind: Deployment
metadata:
 labels:
 app: php
 name: php
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: php
 spec:
 imagePullSecrets:
 - name: registry
 containers:
 - image: registry-1.divante.pl:5000/openloyalty/fpm-framework:4.2.0
 name: php
 ports:
 - containerPort: 9000
 volumeMounts:
 - mountPath: /var/www/openloyalty/var/log
 name: logs
 subPath: logs
 - mountPath: /var/www/openloyalty/config/jwt
 name: jwt
 subPath: jwt
 - mountPath: /var/www/openloyalty/var/uploads
 name: uploads
 subPath: uploads
 - mountPath: /var/www/openloyalty/.env.prod
 name: parameters
 subPath: .env.prod
 - mountPath: /usr/local/etc/php-fpm.d/www.conf
 name: php-pool-config
 subPath: www.conf
 restartPolicy: Always
 volumes:
 - name: logs
 persistentVolumeClaim:
 claimName: logs-volume
 - name: jwt
 persistentVolumeClaim:
 claimName: jwt-volume
 - name: uploads
 persistentVolumeClaim:
 claimName: uploads-volume
 - name: parameters
 configMap:
 name: app
 items:
 - key: .env.prod
 path: .env.prod
 - name: php-pool-config
 configMap:
 name: php
 items:
 - key: www.conf
 path: www.conf

apiVersion: v1
kind: Service
metadata:
 name: php
 namespace: openloyalty
 labels:
 app: php
spec:
 ports:
 - port: 9000
 targetPort: 9000
 selector:
 app: php

#########
Elastic
#########
apiVersion: extensions/v1
kind: Deployment
metadata:
 name: elasticsearch
 namespace: openloyalty
 labels:
 app: elasticsearch
 component: elastcsearch
spec:
 replicas: 1
 selector:
 matchLabels:
 app: elasticsearch
 component: elasticsearch
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: elasticsearch
 component: elasticsearch
 spec:
 imagePullSecrets:
 - name: registry
 securityContext:
 fsGroup: 1000
 initContainers:
 - name: init-sysctl
 image: busybox
 imagePullPolicy: IfNotPresent
 command: ["sysctl", "-w", "vm.max_map_count=262144"]
 securityContext:
 privileged: true
 - name: volume-mount-hack
 image: busybox
 command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]
 volumeMounts:
 - name: elasticsearch
 mountPath: /usr/share/elasticsearch/data
 containers:
 - image: registry-1.divante.pl:5000/openloyalty/elasticsearch:7.5.2
 name: elasticsearch
 securityContext:
 privileged: false
 capabilities:
 add:
 - IPC_LOCK
 - SYS_RESOURCE
 ports:
 - containerPort: 9200
 - containerPort: 9300
 env:
 - name: discovery.type
 value: single-node
 - name: ES_JAVA_OPTS
 value: "-Xms1024m -Xmx1024m"
 volumeMounts:
 - mountPath: /usr/share/elasticsearch/data
 name: elasticsearch
 restartPolicy: Always
 volumes:
 - name: elasticsearch
 persistentVolumeClaim:
 claimName: elasticsearch-volume

apiVersion: v1
kind: Service
metadata:
 name: elk
 namespace: openloyalty
 labels:
 app: elasticsearch
spec:
 ports:
 - port: 9200
 targetPort: 9200
 name: http
 selector:
 app: elasticsearch

##############
MAIL CATCHER
##############
apiVersion: extensions/v1
kind: Deployment
metadata:
 labels:
 app: mail
 name: mail
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: mail
 spec:
 containers:
 - image: mailhog/mailhog
 name: mail
 ports:
 - containerPort: 1025
 restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
 name: mail
 namespace: openloyalty
 labels:
 app: mail
spec:
 ports:
 - port: 1025
 targetPort: 1025
 selector:
 app: mail

########
WORKER
########
apiVersion: extensions/v1
kind: Deployment
metadata:
 labels:
 app: worker
 name: worker
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: worker
 spec:
 imagePullSecrets:
 - name: registry
 containers:
 - image: registry-1.divante.pl:5000/openloyalty/worker-framework:4.2.0
 name: worker
 imagePullPolicy: Always
 volumeMounts:
 - mountPath: /var/www/openloyalty/var/log
 name: logs
 subPath: logs
 - mountPath: /var/www/openloyalty/config/jwt
 name: jwt
 subPath: jwt
 - mountPath: /var/www/openloyalty/var/uploads
 name: uploads
 subPath: uploads
 - mountPath: /var/www/openloyalty/.env.prod
 name: parameters
 subPath: .env.prod
 restartPolicy: Always
 volumes:
 - name: logs
 persistentVolumeClaim:
 claimName: logs-volume
 - name: jwt
 persistentVolumeClaim:
 claimName: jwt-volume
 - name: uploads
 persistentVolumeClaim:
 claimName: uploads-volume
 - name: parameters
 configMap:
 name: app
 items:
 - key: .env.prod
 path: .env.prod

##########
RABBITMQ
##########
apiVersion: extensions/v1
kind: Deployment
metadata:
 name: rabbitmq
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: rabbitmq
 spec:
 imagePullSecrets:
 - name: registry
 containers:
 - image: rabbitmq:3.7-management
 name: rabbitmq
 ports:
 - containerPort: 5672
 volumeMounts:
 - mountPath: /var/lib/rabbitmq
 name: rabbitmq
 restartPolicy: Always
 volumes:
 - name: rabbitmq
 persistentVolumeClaim:
 claimName: rabbitmq-volume

apiVersion: v1
kind: Service
metadata:
 name: rabbitmq
 namespace: openloyalty
 labels:
 app: rabbitmq
spec:
 ports:
 - port: 5672
 targetPort: 5672
 selector:
 app: rabbitmq

##########
LOGSTASH
##########
apiVersion: extensions/v1
kind: Deployment
metadata:
 name: logstash
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: logstash
 spec:
 imagePullSecrets:
 - name: registry
 containers:
 - image: registry-1.divante.pl:5000/openloyalty/logstash:7.5.2
 name: logstash
 ports:
 - containerPort: 5000
 env:
 - name: LS_JAVA_OPTS
 value: "-Xmx256m -Xms256m"
 - name: xpack.monitoring.elasticsearch.hosts
 value: http://elk:9200
 - name: xpack.monitoring.elasticsearch.url
 value: http://elk:9200
 - name: ELASTICSEARCH_HOST
 value: http://elk:9200
 restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
 name: logstash
 namespace: openloyalty
 labels:
 app: logstash
spec:
 ports:
 - name: tcp
 port: 5000
 targetPort: 5000
 - name: udp
 port: 9600
 targetPort: 9600
 selector:
 app: logstash

#######
REDIS
#######
apiVersion: extensions/v1
kind: Deployment
metadata:
 name: redisserver
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: redisserver
 spec:
 imagePullSecrets:
 - name: registry
 containers:
 - image: registry-1.divante.pl:5000/openloyalty/redis:5.0.7-alpine
 name: redis
 ports:
 - containerPort: 6379
 restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
 name: redisserver
 namespace: openloyalty
 labels:
 app: redisserver
spec:
 ports:
 - port: 6379
 targetPort: 6379
 selector:
 app: redisserver

#######
KIBANA
#######
apiVersion: extensions/v1
kind: Deployment
metadata:
 name: kibana
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: kibana
 spec:
 containers:
 - image: docker.elastic.co/kibana/kibana:7.5.0
 name: kibana
 ports:
 - containerPort: 5601
 env:
 - name: ELASTICSEARCH_HOSTS
 value: http://elk:9200
 restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
 name: kibana
 namespace: openloyalty
 labels:
 app: kibana
spec:
 ports:
 - port: 5601
 targetPort: 5601
 selector:
 app: kibana

#########
Varnish
#########
apiVersion: extensions/v1
kind: Deployment
metadata:
 name: varnish
 namespace: openloyalty
spec:
 replicas: 1
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: varnish
 spec:
 imagePullSecrets:
 - name: registry
 containers:
 - image: registry-1.divante.pl:5000/openloyalty/varnish:6
 name: openloyalty-varnish
 ports:
 - containerPort: 80
 volumeMounts:
 - mountPath: /etc/varnish/settings.vcl
 name: varnish
 subPath: settings.vcl
 restartPolicy: Always
 volumes:
 - name: varnish
 configMap:
 name: varnish
 items:
 - key: settings.vcl
 path: settings.vcl

apiVersion: v1
kind: Service
metadata:
 name: varnish
 namespace: openloyalty
 labels:
 app: varnish
spec:
 ports:
 - name: http
 port: 8081
 targetPort: 80
 selector:
 app: varnish

Ingress configuration

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: openloyalty-ingress
 namespace: openloyalty
 annotations:
 ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - host: admin.example.com
 http:
 paths:
 - path: /
 backend:
 serviceName: frontend-admin
 servicePort: 3001
 - host: client.example.com
 http:
 paths:
 - path: /
 backend:
 serviceName: pwacc
 servicePort: 3004
 - host: pos.example.com
 http:
 paths:
 - path: /
 backend:
 serviceName: frontend-pos
 servicePort: 3003
 - host: api.example.com
 http:
 paths:
 - path: /
 backend:
 serviceName: varnish
 servicePort: 8081

How to run OL on Minikube

We assume that you have experience with kubernetes; some details were skipped.

	Install Minikube (go to installation guideline [https://kubernetes.io/docs/getting-started-guides/minikube/])

	Start minikube

minikube start

	Obtain minikube’s IP by

minikube ip

	Add bellow addresses to /etc/hosts (replace IP addresses to obtained above)

192.168.99.100 admin.example.com
192.168.99.100 client.example.com
192.168.99.100 pos.example.com
192.168.99.100 api.example.com

	Create a namespace

kubectl create namespace openloyalty

	Create new or reuse __secret.yml file

apiVersion: v1
data:
 .dockerconfigjson: __REPLACE_IT__
kind: Secret
metadata:
 name: registry
 namespace: openloyalty
type: kubernetes.io/dockerconfigjson

``kubectl create secret docker-registry registry --docker-server=<server_name:port> --docker-username=<username> --docker-password=<password> --docker-email=example@example.com --dry-run -o yaml``

	Apply secret file

kubectl -n openloyalty apply -f __secret.yml

8. Create persistant volumes. In this example we provide storages with manual class name. Make sure that persistent
volumes paths defined in manifests are empty. If not, try to log in to minikube (minikube ssh) and remove it.

kubectl -n openloyalty apply -f pv.yml

9. Apply the rest of manifests. Default registry is registry-1.divante.pl:5000/openloyalty/. You can change it in
deployment.yml. Make sure that you have correct credentials.

kubectl -n openloyalty apply -f storage.yml
kubectl -n openloyalty apply -f config.yml
kubectl -n openloyalty apply -f deployment.yml
kubectl -n openloyalty apply -f ingress.yml

	Make sure that all containers are running

	Log in to php-* container

and execute bellow commands, which set proper ownership of directories:

root@php-6c4b5b8cb9-vq252:/var/www/openloyalty# chown -R www-data:www-data .

Before initializing application sample data make sure that current user is www-data:

root@php-6c4b5b8cb9-vq252:/var/www/openloyalty# su www-data

If you wish to set up full sample data, good for demo purposes:

www-data@php-6c4b5b8cb9-vq252:~/openloyalty$ phing setup

And if you wish to initialize the application with just basic data, which is good for production purposes:

www-data@php-6c4b5b8cb9-vq252:~/openloyalty$ phing basic-setup

	Open the panels in your browser

http://admin.example.com

http://client.example.com

http://pos.example.com

http://api.example.com

Requirements

Here you will find the list requirements that have to be meet to be able to use Open Loyalty.
Before you start reading, have a look at the Symfony requirements [http://symfony.com/doc/3.4/reference/requirements.html].

Operating Systems

The recommended operating systems for running Open Loyalty are Unix systems - Linux, MacOS.

Running Open Loyalty

We recommend to use docker as an abstraction layer to run Open Loyalty. Also, we do recommend to use Kubernetes for
production purpose.

If you don’t want to use Docker or Kubernetes and you want to run Open Loyalty on the server, you need to prepare and
configure all software that’s required to run OL correctly.

Web server configuration

In the production environment we do recommend using Nginx web server

PHP Configuration

	PHP version

	>= 7.1

	PHP extensions

	APCU

PHP configuration settings

	memory_limit

	1024M

	date.timezone

	Europe/Warsaw

	upload_max_filesize

	10M

	post_max_size

	10M

	short_open_tag

	Off

	opcache.validate_timestamps

	0

	opcache.memory_consumption

	256

	opcache.max_accelerated_files

	20000

	realpath_cache_size

	600

Database

We recommend to use PostgreSQL database in version 9.x

As we use Doctrine, it should be possible to run Open Loyalty on any SQL compliant database, however it may
require additional development from your side.

Elasticsearch

We designed our software with scalability and performance in mind. That’s why we separated storage on write and read.
To read data we use Elasticsearch that contains projections of data stored in the write database optimized for reading
and views that loyalty program needs.

We recommend to use Elasticsearch in version 2.x

Upgrading

Each new release has a CHANGELOG.md [https://github.com/DivanteLtd/open-loyalty/blob/master/CHANGELOG.md] and sometimes, when
upgrading may be difficult it has a file UPGRADE.md [https://github.com/DivanteLtd/open-loyalty/blob/master/UPGRADE-2.2.md].

To update your project you need to update divante-ltd/open-loyalty-framework library in composer.json file

"require": {
 "divante-ltd/open-loyalty-framework": "^4.0"
}

Then run command composer update

$ composer update divante-ltd/open-loyalty-framework

If this results in a dependency error, it may mean that other dependencies also have to be upgraded.
Using this command may help you upgrade dependencies.

$ composer update divante-ltd/open-loyalty-framework --with-dependencies

You should run the following commands:

$ bin/console cache:clear

It clears cache

$ bin/console doctrine:schema:update --force

It’s a command to update schema in PostgreSQL without losing data.

$ bin/console oloy:user:projections:index:create --drop-old -n

It deletes all indexes in ElasticSearch and creates new ones.

$ bin/console oloy:utility:read-models:recreate

It recreates all data from event store to ElasticSearch, so the read model is up-to-date.

It’s strongly recommended to refresh data in Elasticsearch in batches once you have more than 50k of events. Otherwise,
you can expect a big downtime as refreshing data in Elasticsearch is time consuming process. There is also a way to
recreate indices in parallel, which will be explained further in the article.

In order to refresh data in batches, you need to execute the command with parameters: FROM and TO are numbers of
events defining the range to process and PACKAGE_SIZE is the size of the batch.

There is list of all available index names:

customer_details
invitation_details
seller_details
account_details
point_transfer_details
transaction_details
coupon_usage
campaign_usage
campaign_bought

Script located in backend/bin/rd-recreate.sh is helpful to speed up recreating process. This script is
responsible for executing command oloy:utility:read-models:recreate with defined parameters. It produces many
independent PHP commands instead of executing one PHP command to process all events. Running a single process may
lead to insufficient memory insufficient memory and slowing down executing script.

Each index can be recreating parallel or even packages for the same index. For example:

background process 1: recreating index customer_details from 0 to 100k events
background process 2: recreating index customer_details from 100k to 200k events
background process 3: recreating index customer_details from 200k to 300k events

background process 4: recreating index invitation_details from 0 to 10k events
background process 5: recreating index invitation_details from 10k to 20k events
background process 6: recreating index invitation_details from 20k to 30k events

We are not able to write proper scenario what way is the most efficient, because it depends on the amount of data
and distribution data in indexes. User is responsible for determining what parameters are the best for his scenario.

Here some examples:

./bin/rd-recreate.sh 0 3 customer_details

By default, the it processes 100k events in 5k packages (STEP=100000 and PACKAGE_SIZE = 5000). It means that script
spawns 3 command execution for recreate customer_details index:

	execution: from event 0 to 100000, processed per 5000 events

	execution: from event 100000 to 200000, processed per 5000 events

	execution: from event 200000 to 300000, processed per 5000 events

nohup ./bin/rd-recreate.sh 0 3 customer_details

This scripts will do the same, but as background process.

Warning

The constants STEP and PACKAGE_SIZE are hardcoded directly in the rd-recreate script. To alter them to your needs,
you will have to edit the file.

Note

You should recreate read model indices according to the order defined above.

If you have less than 50k events in event store, you may want to use a simple phing task to upgrade Open Loyalty:

$ phing migrate

Now you should have all required updates to run a new version of Open Loyalty.
Sometimes we release a new version with backwards compatibility breaks so please look at the UPGRADE-..md files.

About Open Loyalty

Open Loyalty is technology for loyalty solutions. It’s a loyalty platform in open source, with ready-to-use
gamification and loyalty features, easy to set up and customize, ready to work on-line and off-line.

See Open Loyalty product tour [https://youtu.be/cDZZemHxgAk].

There is variety of applications for Open Loyalty. Based on it you can build loyalty solutions like:
loyalty modules for eCommerce, full loyalty programs for off-line and on-line, motivational programs for sales
department or customer care programs with mobile application.

Used concepts

Open Loyalty uses a model for modern applications where frontend and backend are separated.
This gives us a better control on the project and performance and makes an application flexible for many
different use cases.

Open Loyalty benefits from the SPA concept. If you’re not familiar with this concept, you can read this
great article SPA [https://en.wikipedia.org/wiki/Single-page_application].

Points Expiration

Points that are granted to the customer have an expiration date that can be adjusted in the Admin Settings. You can set after how many days the points are overdue and cannot be used by the customer.
To show the logic behind the expiration mechanism, let’s see some use-case scenarios:

Scenario 1: What happens in the system with customer points when some of them expire

The system updates the existing point transfers with new status expired. This is done automatically by the command set in the CRON job. This command fetches all point transfers that should be set as expired and updates their data.

* * * * * /usr/local/bin/php /var/www/openloyalty/bin/console --env=prod oloy:points:transfers:expire > /var/log/cron_ol_points_expire.log 2>&1

Scenario 2: From which transfer the system will subtract points if there is more than one active transfer for the customer

The system will create a new transfer with subtract type. OL only modifies Point Transfers when its status needs a change. In cases like adding or subtracting points from the Customer’s Account, the system will create a new Point Transfer.

The subtracting action starts in Spend customer points action.
OL dispatches \OpenLoyalty\Domain\Account\Command\SpendPoints command along with \OpenLoyalty\Domain\Account\Event\PointsWereSpent event.

OL looks for points that are active on Customer’s Account to sum them up and resolve total account points. If the amount is greater or equal the amount of subtracting points transfer, it proceeds further with logic.

Points

	Points Expiration

How to create new component/directive

For the purposes of this tutorial we create a directive named ‘fooBar’. More information about AngularJS directives [https://docs.angularjs.org/guide/directive].

	Go to src/component/global

	Create new folder fooBar

	Create .js file fooBarDirective

	Inside fooBarDirective.js export custom class FooBarDirective with constructor

	At the end of file don’t forget to add $inject property with array of services to inject. In our example, we do not inject anything.

	You can create custom .html template in path fooBar/templates/fooBar.html

/**
 * Defines fooBar directive
 *
 * @class FooBarDirective
 * @constructor
 */

export default class FooBarDirective {
 constructor() {
 this.restrict = 'A';
 this.require = '?ngModel';
 this.templateUrl = require('./templates/fooBar.html');
 this.scope = {
 value: '=ngModel'
 };
 this.link = function (scope, element, attrs, ctrl) {
 // here function body
 };
 }

 // additional metods
}

FooBarDirective.$inject = [];

	Now we must import this class to our main .js file appAdmin.js or posApp.js or both if needed.

import FooBarDirective from './component/global/fooBar/fooBarDirective';

	Register directive in app*.js file (it’s necessary to start directive name with lowercase)

.directive('fooBar', () => new FooBarDirective());

	Now you can use your custome directive in .html templates

<input type="text" ng-model="myModelName" fooBar/>

Dependencies

We use a lot of dependencies in the whole project. In this section you will find out what we use them in our application.

Installation

$ yarn install

is used to install all dependencies for a project. The dependencies are retrieved from package.json file, and stored in the yarn.lock file.

List of dependencies:

	“@uirouter/angularjs” - standard for routing in AngularJS

	“ace-angular” - powerful code editor for Web environments.

	“angular” - open-source front-end web framework mainly maintained by Google

	“angular-animate” - animation system based on CSS functionality

	“angular-chart.js” - we use this module to create charts (requires Chart.js)

	“angular-flash-alert” - A simple lightweight flash message module

	“angular-jwt” - This library provides an HttpInterceptor which automatically attaches a JSON Web Token to HttpClient requests.

	“angular-legacy-sortablejs-maintained” - helps us with sorting items in a list

	“angular-loading-bar” - automatic loading bar in top of the page

	“angular-mm-foundation” - thanks to this module, we can more easily use the Foundation framework.

	“angular-moment” - parsing, validating, manipulating, and displaying dates and times in JavaScript. (requires moment.js)

	“angular-sanitize” - sanitizes an html string by stripping all potentially dangerous tokens.

	“angular-translate” - makes your life much easier when it comes to i18n and l10n including lazy loading and pluralization.

	“autoprefixer” - PostCSS plugin to parse CSS and add vendor prefixes to CSS rules

	“chart.js” - needed for “angular-chart”

	“font-awesome” - icon pack

	“foundation” - advanced responsive front-end framework

	“foundation-sites” - Foundation for Sites provides you with HTML, CSS, & JavaScript to help you quickly prototype.

	“jquery” - JavaScript library

	“jquery-datetimepicker” - jQuery plugin for date, time, or datetime manipulation in form

	“jsoneditor” - needed for “ng-jsoneditor”

	“lodash” - library that helps write more concise and easier to maintain JavaScript.

	“microplugin” - keep code modularized & extensible

	“moment” - needed for “angular-moment”

	“motion-ui” - a Sass library for creating flexible CSS transitions and animations.

	“ng-jsoneditor” - we use it to edit translations

	“ng-pattern-restrict” - allowing certain inputs based on a regex pattern, preventing the user from inputting anything invalid.

	“ng-showdown” - Markdown to HTML converter

	“ng-simplemde” - Markdown editor (requires simplemde)

	“ng-table” - table with sorting and filtering

	“pickadate” - jQuery date & time input picker.

	“restangular” - AngularJS service to handle Rest API Restful Resources properly and easily,

	“select2” - a customizable select box with support for searching, tagging, remote data sets

	“selectize” - custom selectboxes

	“sifter” - Sifter is a client and server-side library for textually searching arrays and hashes of objects by property

	“simplemde” - needed for “ng-simplemde”

	“sortablejs” - library for reorderable drag-and-drop lists

	“ui-select” - a native AngularJS implementation of Select2/Selectize

Scripts:

To start the development server enter:

$ npm run start

To start build production package:

$ npm run build

or for win32 systems:

$ npm run build:win32

Forms

We use forms to add, update and delete data that are provided by the API. For the purposes of this tutorial we create a form in ‘admin.foo-bar’ module template. We use backend validation, therefore we disable the default validation in the form by adding novalidate attribute to the form element. The ng-submit directive specifies a function to run when the form is submitted, which should be in the controller. If the form does not have an action ng-submit will prevent the form from being submitted.

How to create a custom form

What is required:

submit method: FooBarCtrl.addFooBar(newFooBar)

Open our custom module template src/modules/admin.foo-bar/templates/foo-bar.html and paste below lines of code:

<form novalidate ng-submit="FooBarCtrl.addFooBar(newFooBar)">
 <div class="box-content">
 <div class="row">
 <div class="columns medium-12">

 // Input block
 <fieldset class="fieldset">
 <legend>{{ "fooBar.header" | translate }}</legend>
 <div class="row">

 // Input label
 <div class="small-3 medium-2 columns">
 <label>{{ "fooBar.name" | translate }} *</label>
 </div>

 // Input field
 <div class="small-9 medium-10 columns" form-validation="validate.name.errors">
 <input type="text" ng-model="newFooBar.name" required>
 // Prompt container
 {{ "fooBar.prompt" | translate }}
 </div>
 </div>
 </fieldset>
 </div>
 </div>
 </div>

 // Form footer
 <div class="box-footer" ng-init="FooBarCtrl.loaderStates.FooBarDetails=false">
 <div class="row">
 <div class="columns small-12">

 // Submit buttom
 <button class="button button-septenary-colorized float-left m-r-1" type="submit">
 {{ "global.save" | translate }}
 </button>

 // Cancel buttom
 <button type="button" ui-sref="admin.foo-bar" class="button button-default float-left" href="#">
 {{ "global.cancel" | translate }}
 </button>
 </div>
 <div style="clear:both;"></div>
 </div>
 </div>
</form>

A quick overview of the main components

Select copmponent

For select components we use angular directive named Angular Selectize 2 [https://www.npmjs.com/package/angular-selectize2]

 <div class="row">
 <div class="small-3 medium-2 columns">
 <label>{{ "fooBar.foo" | translate }} *</label>
 </div>
 <div class="small-9 medium-10 columns" form-validation="validate.foo[$index].bar.errors">
 <selectize
 ng-model="newFooBar.foo[$index].bar"
 options="fooBarCtrl.foo"
 config="fooBarCtrl.fooConfig"
 required>
 </selectize>
 {{ "fooBar.prompt" | translate }}
 </div>
</div>

Radio component

<div class="row">
 <div class="medium-2 small-3 columns">
 <label>{{ "fooBar.foo" | translate }}</label>
 </div>
 <div class="medium-10 small-9 columns" form-validation="validate.fooBar.errors">
 <input type="radio" ng-model="fooBar.foo" value="foo" id="foo">
 <label for="foo">{{ "fooBar.foo" | translate }}</label>
 <input type="radio" ng-model="fooBar.bar" value="bar" id="bar">
 <label for="bar">{{ "fooBar.bar" | translate }}</label>
 {{ "fooBar.prompt" | translate }}
 </div>
</div>

Checkbox component

For checkboxes we use custom directive. Under this path you will find the code of the directive src\component\global\checkbox\templates\checkbox.html

<div class="row">
 <div class="medium-2 small-3 columns">
 <label>{{ "fooBar.foo" | translate }}*</label>
 </div>
 <div class="medium-10 small-9 columns" form-validation="validate.fooBar.errors">
 <checkbox ng-model="fooBar.foo"></checkbox>
 {{ "fooBar.prompt" | translate }}
 </div>
</div>

DatePicker

For selecting date we use custom directive. Under this path you will find the code of the directive src\component\global\datepicker\DatepickerDirective.js based on jQuery Plugin Date and Time Picker [https://github.com/xdan/datetimepicker]

<div class="row">
 <div class="medium-2 small-3 columns">
 <label>{{ "fooBar.foo_date" | translate }}</label>
 </div>
 <div class="medium-10 small-9 columns" form-validation="validate.fooBar.errors">
 <input type="text" ng-model="fooBar.foo_date" datepicker required no-time="true">
 {{ "fooBar.prompt" | translate }}
 </div>
</div>

Using the Foundation framework

Foundation for Sites 6 includes a wide range of modular and flexible components that are easily styled. It has a large library of ready to use html, js, css UI components [https://foundation.zurb.com/building-blocks/]

When you want to add a new style or some js plugin. Check the framework foundation first. It is very possible that foudation already has the solution you are looking for. We want to avoid duplicating the code. Before writing a code, read the Foundation for sites documentation [https://foundation.zurb.com/sites/docs/] and check what the possibilities give. There really is a lot of it.

The Front-End Developer’s Guide

Introduction

	Introduction

	Structure

	Dependencies

	Root templates overview

	How to create new component/directive

	How to create new module/page

	Forms

	Using the Foundation framework

	Styles

Structure

	Introduction

	Structure

	Dependencies

	Root templates overview

	How to create new component/directive

	How to create new module/page

	Forms

	Using the Foundation framework

	Styles

Dependencies

	Introduction

	Structure

	Dependencies

	Root templates overview

	How to create new component/directive

	How to create new module/page

	Forms

	Using the Foundation framework

	Styles

Root templates overview

	Introduction

	Structure

	Dependencies

	Root templates overview

	How to create new component/directive

	How to create new module/page

	Forms

	Using the Foundation framework

	Styles

How to create new component

	Introduction

	Structure

	Dependencies

	Root templates overview

	How to create new component/directive

	How to create new module/page

	Forms

	Using the Foundation framework

	Styles

How to create new module

	Introduction

	Structure

	Dependencies

	Root templates overview

	How to create new component/directive

	How to create new module/page

	Forms

	Using the Foundation framework

	Styles

Forms

	Introduction

	Structure

	Dependencies

	Root templates overview

	How to create new component/directive

	How to create new module/page

	Forms

	Using the Foundation framework

	Styles

Using the Foundation framework

	Introduction

	Structure

	Dependencies

	Root templates overview

	How to create new component/directive

	How to create new module/page

	Forms

	Using the Foundation framework

	Styles

CSS styles

	Introduction

	Structure

	Dependencies

	Root templates overview

	How to create new component/directive

	How to create new module/page

	Forms

	Using the Foundation framework

	Styles

Introduction

Application is based on AngularJS [https://code.angularjs.org/1.7.7/docs/guide/introduction] and Zurb Foundation [https://foundation.zurb.com/] frameworks.

How to run project locally:

	Install dependencies:

$ yarn install

	Build project:

$ npm run build

	Configure backend paths in config.js file

	Run project:

$ npm run start

How to create new module/page

For the purposes of this tutorial we create a module named ‘admin.fooBar’. More information about AngularJS modules [https://docs.angularjs.org/guide/module].
Each module, in addition to the controller, service and template, has a file named module.js, which contains its configuration.

	Go to src/modules/ and create folder named admin.foo-bar

	Create .js file named module.js and paste below code.

import FooBarController from './FooBarController'; // import controller
import FooBarService from './FooBarService'; // import service

const MODULE_NAME = 'admin.foo-bar'; // module name

angular.module(MODULE_NAME, [])
 .config($stateProvider => {
 $stateProvider // set state provider
 .state('admin.foo-bar', {
 url: "/foo-bar", // URL under which the page will be available
 views: {
 'extendTop@': { // page header
 templateUrl: 'templates/foo-bar-extend-top.html',
 controller: 'FooBarController',
 controllerAs: 'FooBarCtrl'
 },
 'main@': { // main template
 templateUrl: require('./templates/foo-bar.html'),
 controller: 'FooBarController',
 controllerAs: 'FooBarCtrl'
 },
 'extendBottom@': { // page footer
 templateUrl: 'templates/foo-bar-extend-bottom.html',
 controller: 'FooBarController',
 controllerAs: 'FooBarCtrl'
 }
 },
 })
 })
 .run(($templateCache, $http) => {
 let catchErrorTemplate = () => {
 throw `${MODULE_NAME} has missing template`
 };

 $templateCache.put('templates/foo-bar-extend-top.html', ''); // putting top into $templateCache
 $templateCache.put('templates/foo-bar-extend-bottom.html', ''); // putting footer into $templateCache

 $http.get(`templates/foo-bar.html`) // template request
 .then(
 response => {
 $templateCache.put('templates/foo-bar.html', response.data); // putting main template into $templateCache
 }
)
 .catch(catchErrorTemplate);
 })
 .controller('FooBarController', FooBarController) // set controller
 .service('FooBarService', FooBarService); // set service
try {
 window.OpenLoyaltyConfig.modules.push(MODULE_NAME); // register module
} catch (err) {
 throw `${MODULE_NAME} will not be registered`
}

	If you do not need to download additional data, we do not need to create a service. We use Restangular [https://github.com/mgonto/restangular] for GET, POST, DELETE, and UPDATE requests. In root of module create service file FooBarService.js. Inside file we need to create class FooBarService with methods like getFooBarItems(params). At the end of file don’t forget to add $inject property with array of services to inject. In our example, we need to inject ['Restangular', 'EditableMap']. EditableMap is used for data mapping.

Service

export default class FooBarService {

 constructor(Restangular, EditableMap) {
 this.Restangular = Restangular;
 this.EditableMap = EditableMap;
 }

 getFooBarItems() { // method returns object
 return this.Restangular.one('foo').one('bar').one('resources').get();
 }
}

FooBarService.$inject = ['Restangular', 'EditableMap'];

	Now we need to create controller for our module. Create file named FooBarController.js

Controller

export default class FooBarController { // create Class
 constructor($scope, AuthService, FooBarService, Flash, $filter, EditableMap) { // create constructor
 if (!AuthService.isGranted('ROLE_ADMIN')) { // check role (who has access)
 AuthService.logout();
 }
 this.$scope = $scope;
 this.FooBarService = FooBarService;
 this.EditableMap = EditableMap;
 this.AuthService = AuthService;
 this.Flash = Flash;
 this.$filter = $filter;
 this.loaderStates = { // full page loader
 coverLoader: true // default enabled
 }
 }

getFooBarData() { // our get data method
 let self = this;

 self.FooBarService.getFooBarItems() // fire getFooBarItems method from FooBarService
 .then(
 res => {
 self.$scope.fooList = res.resources; // assign response data
 self.loaderStates.coverLoader = false; // turn off loader
 },
 () => {
 let message = self.$filter('translate')('xhr.get_fooBar.error'); // set message from translations
 self.Flash.create('danger', message); // display error message
 self.loaderStates.coverLoader = false; // turn off loader
 }
)
 }

}

FooBarController.$inject = ['$scope', 'AuthService', 'FooBarService', 'Flash', '$filter', 'EditableMap'];

	The next thing we should do is create a template. To do that, create folder templates. In our case inside this folde we create only one .html template file named foo-bar.html

Template

<box-loader loading="FooBarCtrl.loaderStates.coverLoader" cover="1" class="cover" delay="100"></box-loader>

<div class="heading" ng-init="FooBarCtrl.getFooBarData()">
 <h1>{{ "fooBar.heading" | translate }}</h1>
</div>
<div style="clear:both;"></div>
<div class="fooBar-list box">
 <div class="box-title">
 <h1 class="text-left">{{ "fooBar.list" | translate }}</h1>
 </div>
 <div class="box-content">

 <li ng-repeat="item in fooList">
 <p ng-bind="item.name"></p>

 </div>
</div>

	Now we must register module. Go to app*.js file and paste:

Module registration

require('./modules/admin.foo-bar/module.js');

and here:

angular.module('OpenLoyalty', [
 'admin.foo-bar',
])

You can now save all changes and restart dev server. Your new page should be visible on /admin.html#!/admin/foo-bar.

	Adding page to left navigation

You can add new page into left navigation by editing left-nav.html on path src/modules/admin.partials/templates/
Find the selected category or create a new one, then paste code:

<ul class="menu vertical nested">
 ...
 <a ui-sref="admin.foo-bar">{{ "fooBar.foo_bar" | translate }}
 ...

	Adding page to top navigation

You can also add new item into top navigation by editing top-nav.html on path src/modules/admin.partials/templates/

<ul class="menu settings">
 ...
 <li ng-show="RootCtrl.AuthService.hasPermission('ADMIN', 'VIEW')"> // you can set role (who can see this)
 <a ui-sref="admin.foo-bar">
 {{ "fooBar.foo_bar" | translate }}

 ...

Structure

The whole part of the application frontend is located in the frontend catalog. You will find the following subdirectories:

	dev - additional scripts used in package.json.

	dist - directory containing the result of the bundler module operation

	node_modules - directory with installed npm packages

	rancher - scripts that use rancher

	src - source of main application.

There are several additional files in the root directory.

	webpack.config - webpack configuration file

	package.json - list of packages needed to run the environment,

	.sass-lint.yml - rules for Sass / SCSS files

	.eslintrc - ESLint configuration file. Allows you to specify the JavaScript language options you want to support.

We mainly work in the src folder, therefore we will describe its structure in a deeper way.

	Catalog name

	Description

	components

	In the components folder there are two main components from which the
application is built. These are:

	AdminFieldsetBlockDirective.js - block

	AdminFieldsetRowDirective.js - row

	fonts

	Here you can find all font files

	img

	All graphic files are located here

	modules

	The modules directory contains all containers used in various parts of
the application. Each module contains controller, service and module
configuration file. The templates directory contains .html files that
represent individual pages of the application

	scripts

	There are additional scripts in this directory

	style

	Here are the application styles. We use the SCSS preprocessor to generate
CSS files

	templates

	In this directory there are two main .html templates files:

	admin.html - tempolate of admin cockpit app

	pos.html - tempolate of point of sale app

	root

	In the root directory there are three main .js files, two of them are
the entry points of the entire application:

	appAdmin.js - admin cockpit app

	appPos.js - point of sale app

The third file is config.js. The application settings are stored here

Styles

Sass is an extension of CSS that adds power and elegance to the basic language. It allows to use variables, nested rules, mixins, inline imports, and more, all with a fully CSS-compatible syntax. This helps us keep stylesheets well-organized.

In the project you will find a dozen files (frontend/src/styles/) in which we have organized styles:

	fonts - fonts used in the application

	vars - main colors

	mixins - custom functions

	login - login panel styles

	buttons - buttons styles

	box - box and tabs styles

	cards - card styles

	table - table styles

	labels - lebels styles

	navs - navigation menu styles

	modal - modal window styles

	lists - ordered and unordered list styles

	sidebars - left and right sidebars styles

	content - body, sections, forms styles

	helper - many helper styles

	select2 - select list styles

	loader - loaders styles

	icon_set_1 - icons set

	icon_set_2 - icons set

	static-pages - static pages styles

	media - media queries

If you have a webpack started, after each change in scss files, the browser will be refreshed and you will be able to follow the changes live.

Root templates overview

Customers

In this section of the guide, you will become familiar with the customer account menu, and learn to manage customer accounts according to adding, deleting and modifying data. You will also learn how to create customer account that can be referenced in customer levels and segments.

Customers menu

	Introduction

	All customers

	Referred customers

Customers account creation

	Creating Customer account from admin panel

	Import Customers list

	XML file structure

	Updating Customer’s account

	Deactivate a Customer’s account

	Anonymize a Customer’s account

	Delete a Customer’s account

	Level assigned manually mechanism

Customer Profile details

	Customer profile & activity details

Customers Accounts

	Customer account activation

	Customer sign in

	Customer account

Anonymize a Customer’s account

Any customer account that is currently active can be anonymized. Customer is anonymized so all of the information
about the customer will be anonymized.
The following data will be anonymized: Name, Surname, Phone number, Date of birth, Address, Email Address, company information

To anonymize a customer’s account:

	Tap Customers on the Admin sidebar and choose All Customers.

	In the Customers list, find the record to be anonymized and click magnifying glass icon to see customer profile page.

	Scroll down and click Anonymize button in the Anonymize customer section.

[image: System Message]

	System will display a message asked you to confirm the action.

[image: System Message]

	When you confirm it, customer is anonymized.

Creating Customer account from admin panel

Customers usually create their own accounts from your e-commerce site or using Customer Cockpit.

However, you can also create customer account directly from the Admin or POS Cockpit, which is useful when customers order by phone or at a merchant location.

Note

The customer account created from the Admin or POS Cockpit has an active status instantly, so there is no need to activate the account by them

[image: New Customer Account Information]

To create a New Customer Account:

	Tap Customers on the Admin sidebar and choose Add Customer. You can also add a customer directly from All customers list by clicking Add Customer at the top of the page

[image: Add Customer Options]
[image: Basic Information]

	In the Basic Information section, complete the following required fields:

	First name

	Last name

	E-mail

Note

Only one Customer account can be created per one e-mail address.

You can change the email address associated with an account by editing a customer

	In the same section, complete the optional fields as needed:

	Gender

	Birth date

	Phone (in one of acceptable formats)

	Loyalty card number

	Select level

	Select POS

	Select merchant

	Select store

Warning

For successful account creation customer needs to be assigned to any Level, so one of the following conditions must exist:

	Level with Condition value equal to 0 must be created. Customer will be automatically assigned to it.

	during account creation you will manually assign any level in the Select level field

	If applicable, create Label(s) you want to refer to customer. Labels are intended to be used to specify identifying attributes of customer.

Labels can be used to organize and to select subsets of customers at customer segmentation process. To learn more about Customer segmentation, see Segments

	
	To create Label, tap Add Label and do the following:

	
	Type label Key, which is a label name

	Type label Value

For example: Key – Customer type, Value – wholesale

	Repeat the process for all labels you want to be used in your Loyalty Program

[image: Customer Labels]

Note

Labels can be added to a customer during account creation and subsequently added and modified at any time

	Mark Company checkbox, to complete customer’s company information if needed.

	Mark Address checkbox, to complete customer’s address information if needed.

[image: Company Data and Address Sections]

	Company Data section is available only when Company checkbox is selected.

All fields available in this section i.e. Company name and Tax Identification Number are required and need to be filled in.

	Address section is available only when Address checkbox is selected. Complete the following required fields:

	Street name

	Building name

	Postal code

	City

	Country

In the same section, complete the optional fields as needed:

	Flat/Unit name

	State/Province

	Mark the Agreements that customer has agreed to. Legal agreement is required and needs to be filled in to set up an account.

[image: Agreements]

	When complete, tap SAVE

When the customer account is saved, its record appears at All customers list.

The Customer Profile Details tab displays a summary of account activity and data provided during account creation. To learn more about Customer Profile, see Profile details

Field description

	FIELD

	DESCRIPTION

	BASIC INFORMATION

	First name*

	
The customer’s first name

	Last name*

	
The customer’s last name

	Gender

	
Identifies the customer’s gender as Male, Female or Not disclosed

	Birth date

	
The customer’s date of birth.

Information can be used to offer points for the birth anniversary

	Email*

	
The customer email address.

Is used as a login name while logging to Customer Cockpit.

	Phone

	
The customer’s phone number. Formatting is as on follow example:

	Country Code: +48/48

	Subscriber number: 123456789

	In total: +48123456789 / 123456789 / 48123456789

	Loyalty card
number

	
The customer loyalty card number

	Labels

	
Internal tags you can use to refer your customer.

If applicable, can be used to segmentation to identify the customers

that this segment applies to

	Select level

	
Starting level assigning to customer

	Select POS

	
POS which will be linked to the customer

	Select merchant

	
Merchant account, which will be linked to the customer

	Select store

	
Store linked to the level

	Company

	
customer associated with company.

If marked then additional sectionwill be shown.

	Address

	
customer address needed.

If marked then additional section will be shown

	
COMPANY DATA

Visible only when Company checkbox is marked

	Company name*

	
The company name, if applicable for this customer

	Tax Identification
Number*

	
The company TAX / VAT number

	
ADDRESS

Visible only when Address checkbox is marked

	Street name

	
The street address of the customer

	Building name

	
The name/number of a building or property where the customer

resides at this address

	Flat/Unit name

	
The flat/unit name or number of the customer at this address

	Postal code

	
The postal code of the customer at this address

	City

	
The city where the customer resides at this address

	State/Province

	
The state or province of the customer at this address

	Country

	
The country where customer resides at this address

	
AGREEMENTS

	
List of consents to which the customer can/has agreed.

Options include:

	Legal agreement (required)

	Marketing agreement

	Data processing agreement

Deactivate a Customer’s account

Any customer account that is currently inactive appears in the Customers list as grayed-out.

An account can be locked and unlocked (set to active) by Admin user.

To lock/unlock an admin account:

	Tap Customers on the Admin sidebar and choose All Customers.

You can also deactivate/activate customer account from Edit mode

	In the Customers list, find the record to be locked/unlocked and click Deactivate/Activate icon [image: remove] in the Action column

	System will display a message asked you to confirm the action

[image: System Message]

	The deactivated customer account appears on the Customers list as a grayed-out

	To activate an account click the same icon [image: remove] and confirm the action

[image: System Message]

	The activated customer account appears on the Customers list as a black

Delete a Customer’s account

Any customer account that is currently active can be deleted. Customer is deleted so all of the information about the customer disappears.
Customer disappears also from the customers list and isn’t included in the total number of customers.

To delete a customer’s account:

	Tap Customers on the Admin sidebar and choose All Customers.

	In the Customers list, find the record to be deleted and click magnifying glass icon to see customer profile page.

	Scroll down and click Delete button in the Delete customer section and confirm the action:

[image: System Message]

	The system will display a message asking you to confirm the action.

[image: System Message]

	Once you confirm it, the customer is deleted.

Updating Customer’s account

You can edit information about your customers, including all their data provided during account creation process.

You can update customer data directly from their Profile Detail Page or by selecting their record from All Customers list.

[image: Customer account editing]

To edit a Customer Account from Customers list:

	Tap Customers on the Admin sidebar and choose All Customers

	In the Customers list, find the record to be edited and click Edit icon [image: edit] in the Action column to open the record in edit mode

	Make any necessary changes to the customer account information

	When it is done, tap SAVE

To edit a Customer Account from Profile Detail Page:

[image: Edit Option in Profile Details]

	Tap Customers on the Admin sidebar and choose All Customers

	In the Customers list, find the record to be previewed and click View icon [image: view] in the Action column to open the record in view mode

	Click Edit at the top of the page. The same editor will be opened like in the example above.

	Make any necessary changes to the customer account information

	When it is done, tap SAVE

Import Customers list

If you have a customer list that you want to add to your Loyalty Program, you can enter it into a customer XML file and then import it in your Open Loyalty Admin.

[image: Customers import]
Importing a XML file will create a customer in your Loyalty platform for each email address, phone number and loyalty card number in the file.

Any customers with duplicate email addresses, phone numbers or loyalty card number will be skipped during an import

To import a Customer list from a file:

	Tap Customers on the Admin sidebar and choose All Customers

	Click Import at the top of the page, next to Add Customer

[image: Customers Import Button]

	Click Upload in the Import Customers dialog and choose your customer XML file

[image: Customers Import Button]

	When file is selected, click IMPORT

The customers, whose records you’ve added to the XML file, will appear in the All customers list in your Open Loyalty admin

Note

For all imported customers (on the provided in XML file email addresses) Welcome email with temporary password is sent.

Customers accounts are active instantly, so after email receiving they can simply log in to theirs account using individual e-mail address (from XML file) and temporary password (from the Welcome email)

Customers account creation

	Creating Customer account from admin panel

	Import Customers list

	XML file structure

	Updating Customer’s account

	Deactivate a Customer’s account

	Anonymize a Customer’s account

	Delete a Customer’s account

	Level assigned manually mechanism

Level assigned manually mechanism

During customer account creation or in edition mode you can set manually the level to which the customer is assigned.

You can simply check which of your customers have manually assigned level - on a List of customers in All customers section for every manually assigned customer record additional Manually assigned icon [image: unlink] in the Action column is displaying.

[image: Unlink manual assignment]
Information is also displayed in their profile details - Assigned manually field is displaying in Current level section.

[image: Level Section]
When customer has manually assigned level, he still earns points and can be promoted to the next level, but can not fall to the lower level.

Warning

When customer collect enough amount of points to reach next level, he is promoted and manually assignment is automatically Unlinked

In that case level downgrade settings (if applicable) can be applied and customer can fall to the lower level.

To remove manual assignment by Admin, and allow customer to be automatically assigned to the level based on the earned points click Unlink

You can also simply Unlink manually assignment also from All customers list by clicking Unlink icon [image: unlink] in the Action column.

[image: Unlink manual assignment]

XML file structure

Tip

If you don’t have or don’t want to import all this data, remove all code lines/section instead leave it blank.

For example, if you don’t want to include province remove all lines from the code - don’t leave it with no value as below

Remember that some of them are required, so if you remove it Import will not be possible

WRONG FORMATTING

<province> </province>
<province></province>

Example of completed Customer XML file structure below

<?xml version="1.0" encoding="UTF-8"?>
<customers>
 <customer>
 <active>true</active>
 <sendActivationMail>false</sendActivationMail>
 <address>
 <address1>Building name </address1>
 <address2>Flat/Unit name</address2>
 <city>Wroclaw</city>
 <country>PL</country>
 <postal>45-123</postal>
 <province>dolnoslaskie</province>
 <street>Main road</street>
 </address>
 <agreement1>true</agreement1>
 <agreement2>true</agreement2>
 <agreement3>true</agreement3>
 <birthDate>1985-02-03</birthDate>
 <company>
 <name>Company</name>
 <nip>123-12-22-123</nip>
 </company>
 <email>jdoe@example.com</email>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <gender>male</gender>
 <labels>
 <label>
 <key>group</key>
 <value>wholesaler</value>
 </label>
 </labels>
 <loyaltyCardNumber>936592735</loyaltyCardNumber>
 <phone>+48231231233</phone>
 <levelID>000096cf-32a3-43bd-9034-4df343e5fd93</levelID>
 <posId>00000000-0000-474c-1111-b0dd880c07e2</posId>
 <sellerId>00000000-0000-474c-b092-b0dd880c07e4</sellerId>
 </customer>
</customers>

Customer account

Customers through theirs account can view all their activity within Loyalty Program, and manage their own personal information.

My Profile

Customers can update their account information. The store Admin can also update customer accounts

[image: Client My profile]

My Level

Displays a information about current and next level

[image: Client My level]

My Transactions

Displays a list of all customer transactions, with a link to each to see more information – purchased items and transaction details

[image: Client My transactions]

My Points

Displays a loyalty points balance and levels details. Menu gives him also ability to track all points transfers with detail information regarding the date, points state and type and reward (in case of transfers with “spending” type)

[image: Client My points]

My Rewards

Lists all available and redeemed for customer rewards

[image: Client My rewards]

Customers accounts

The main page of your website can display message for customers to log in or register for an account with your Loyalty Program. Customers who open an account with your Loyalty Program enjoy a range of benefits.

Customers can access their account dashboard by clicking the link on your website. They can use their account to view and modify their personal information provided during registration process, check and redeem rewards , learn how to earn points, view their transaction history (offline and online) and history of points earned and spent

[image: Customer Account Home Page]

Content

	Customer account activation

	Customer sign in

	Customer account

Customer Sign in

Customers have easy access to their account from main page of your website. Depending on the configuration, customers can be redirected to customer cockpit as subdomain (like club.yourbrand.com) or as loyalty module within your website.

[image: Link to Loyalty Module within Webshop]
[image: Sign In to Customer Account within Subdomain]
When customers forget their passwords, a reset link can be sent to the email address or phone number that is associated with the account on request.
This password reset message can be disabled in the Admin Cockpit in Message Templates Settings.

To sign in to your customer account:

	Click a link on the website to open Login page

	When prompted, enter the Email Address/Phone number that is associated with customer account, and Password. Then, tap Sign In

Note

Depending on the configuration, customer can use to log in only one: E-mail address or Phone number

To reset your customer account password:

	On the Login page, tap Forgot password?

	When it is prompted, enter the Email Address that is associated with your account, and tap Recover Password

If the email address you entered matches the one that is associated with the account, you will receive a “Password reset requested” message with a link to reset your password.

	Click the Reset Password link in the message and enter your New Password. Enter it again to confirm

Warning

Your password must be eight or more characters long, and contain at least one upper case letters, one numeric character and one special character

Warning

This password reset feature can be disabled in the Admin Cockpit in Message Templates Settings.

When you receive confirmation that the password is updated, you can use the new password to log in to your account.

To sign out of the customer account:

In the upper-right corner, tap the Logout [image: logout] icon

[image: Logout]
When customer logouts, the Sign-In page returns.

Account activation via E-mail

On the email address provided by customer in the registration form activation link will be sent.

[image: Account activation link email message]

To activate customer account using link:

	Click Activate account in the email message

	Customer account will be activated instantly. Customer will be redirected automatically to login page to enter login credentials

Warning

This email activation feature can be disabled in the Admin Cockpit in Email Settings.

If for some reason customer will lost this email/link his account can be activated manually by Admin.

To learn more about manual customer account activation please see Deactivate a customer’s account

Customer account activation

When customer complete registration form directly from the Client cockpit, depending on the settings, to activate the account he will receive:

	Activation code

when account activation method is selected to SMS. Activation code will be sent to his phone number provided in the form

	Activation link

when account activation method is selected to E-mail. Link will be sent to his e-mail address provided in the form

Note

Remember, that in Open Loyalty settings you can choose only one Account activation method that will be used for all customer

Note

If you register customer from Admin or POS Cockpit activation code or link is not sent. Customer account become active instantly.

	Account activation via SMS

	Account activation via E-mail

Account activation via SMS

On the phone number provided by customer in the registration form activation code will be sent.

[image: Account activation code SMS message]

To activate customer account using SMS code:

When customer receives that message, he needs to return on Login page and do as follow:

	On the login page, tap Activate an account or resend a code

[image: Login page]

	When it is prompted, in the Account activation window, enter the Activation code that received. Then tap SAVE

If for some reason customer will lost this code he can simply resend an activation code.

To resend an activation code:

	On the login page, tap Activate an account or resend a code , like in a previous step

	When it is prompted, tap Resend code in the Account activation window

	Enter the Phone number on which another resend code will be sent. Phone number can be different than this one provided in registration form.

	Formatting is as on follow example:

	
	Country code: +48/48

	Subscriber number: 123456789

	In total: +48123456789 / 123456789 / 48123456789

[image: Resend code]

	When it is done, tap Resend activation code

All customers

The Customers page lists all customers who have registered for an account with your loyalty program, or were added by the administrator (manually or imported from XML file).

Use the standard controls to sort the list, filter and search customer by typing in the field under column header value you want to find, and apply actions to selected customers.

Pagination controls appear if there are more customer records than fit on the page, and are used to move from one page to the next.

[image: All customers]

To view customer detail information:

	On the Admin sidebar, tap Customers. Then choose All Customers

	In the Customers list, find the record to be previewed and click View [image: view] icon in the Action column to open the record in view mode

[image: Customer Record Preview]
To learn more about Customer Profile Details Page, see Profile details

Field description

	Field

	Description

	
First name

	
The first name of the customer

	
Last name

	
The last name of the customer

	
Phone

	
The customer’s phone number in one of acceptable format.

Can be used as a login to Customer Cockpit or search/filter option

	
E-mail

	
The customer’s email address.

Can be used as a login to Customer Cockpit or search/filter option

	
Gender

	
Customer gender

	
Birth date

	
The customer’s date of birth

	
Created at

	
The date when customer account was created

	
CLV

(Customer Lifetime Value)

	
The total amount of customer registered transactions

	
AVO

(Average Value of Orders)

	
The average amount of customer registered transactions

	
Orders

	
The total number of registered transactions (orders) from customer registered

within the Loyalty Program

	
Days from lat order

	
The number of days since the last registered customer transaction making

	
Current level

	
Current level that is assigned to customer account.

To learn more about levels see Levels

	
Store

	
The Store the customer belongs to

	
Assigned manually

	
Information whether current customer level was assigned manually by Admin or not.

Options include: Yes/No

To learn more about distinction between manually assigned level and system

assignment please see Levels

	
Actions

	
The operations that can be applied to selected customer record.

Options include:

	edit customer account

	view Customer profile details

	deactivate customer account

	unlink manually assigned level. Previous system level will be assigned.

Customers Menu

	Introduction

	All customers

	Referred customers

Introduction

The Customers menu provides access to all customer information required for its existence in your Loyalty Program.

This applies to both, customer personal data (such as name, surname, gender, date of birth and contact details) and data on its activity in the program (such as registered transactions and points transfer).

[image: Customers Menu]

To display the Customers menu:

Tap Customers on the Admin sidebar and choose All customers

Menu options:

All Customers

Lists all customers who have registered for an account with your loyalty program, or were added by the administrator

[image: All customers]

Add Customer

Lists all data that need to be filled out to add new customer to your Loyalty Program

[image: Add customer]

Referred customers

Lists all referred customers and recipients of their invitations details

[image: Referred customers]

Referred customers

Referral (refer a friend, member get member) functionality allows to reward Customers for invitation other Customers to Loyalty program. It allows to give prize either referrer (Customer who sent invitation) and recipient (Customer who responded with action to invitation).

Administrator can view all invitations sent by customer with current status:

	
	Invited

	invitation was sent by the referrer to the recipient’s email address or phone number
(Heads up: OL can be configured not to send invitation messages)

	
	Registered

	referred customer (recipient) registered new account in Open Loyalty

	
	Made purchase

	referred customer (recipient) made first purchase in Open Loyalty

[image: Referred customers]

To see all customers who sent and received invitation:

	On the Admin sidebar, tap Customers. Then choose Referred customers.

Columns description

	COLUMN

	DESCRIPTION

	Referrer Id

	The customer ID of a registered customer, who send invitation

	Referrer Name

	The name and surname of a registered customer

	Recipient Id

	The customer ID of a referred person.
Will be shown when referred customer will register

	Recipient Name

	The name and surname of a referred person.
Will be shown when referred customer will register

	Created at

	Date and time of operation

Customer Profile details

The Customer Profile Detail Page is used to hold all the details of your customers.

You can view and manage the customer’s loyalty & personal information, history of customer transactions, points transfer and redeemed rewards

[image: Customer Profile]

Customer Account details

	Profile details

	Agreements

	Segments

	Current level

	Assigned POS

	Assigned Merchant

Customer Loyalty Activity

	Introduction

	Loyalty

	Profitability

	Timeline

	Transactions

	Points transfers

	Available rewards

	Redeemed rewards

	:doc:`/userguide/customers/profile_details/loyalty/referred_customers

`

Agreements

Agreements section is a list of consents and includes information about their acceptance by customer. If the customer has accepted the agreement, the checkbox in the name record is marked.

[image: Agreements]

To mark the agreement as a accepted by the customer go to edit mode by clicking Edit icon [image: edit] in the block header or Click Edit above account summary block, at the top of the page.

The same behaviour is used to withdrawal of consent by the customer.

Account

	Profile details

	Agreements

	Segments

	Current level

	Assigned POS

	Assigned Merchant

Current level

Current level section provides information about current (assigned to customer) level and rewards if available.

[image: Level Section]
Special rewards specify temporary additional discounts that customer assigned to this level can get.

[image: Special Rewards Preview]
To change manually the level to which the customer is assigned go to edit mode by clicking Edit icon [image: edit] in the block header or click Edit above account summary block, at the top of the page. Then, additional field Assigned manually appears.

To remove manual assignment by Admin, and let customer earn points based on Earning rules click Unlink

You can also simply Unlink manual assignment from All customers list by clicking Unlink icon [image: unlink] in the Action column.

[image: Unlink manual assignment]
To learn more about levels and special rewards, see Levels

	Field

	Description

	Name

	
Name of the customer level

	Condition value

	
The points/transactions limit value after which customer was assigned to the level

	Reward code

	
Discount code to be used on

	Reward value

	
Percentage discount value

	Special rewards

	
Special discounts available when additional conditions are met

	Assigned manually

	
Field will be displayed only when customer level will be assigned manually

by Admin – during adding or editing account.

To remove manual assignment click Unlink

Assigned Merchant

Assigned Merchant section provides information to which merchant customer is assigned.

Not only merchant from POS assigned to customer account can be selected.

[image: Assigned Merchant]
To change the Merchant to which the customer is assigned click Edit above account summary block, at the top of the page to go to edit mode.

Assigned POS

Assigned POS section includes information about customer account assignment to the offline or online store.

Note

Customer can be assigned to only one POS

[image: Assigned POS]
To change the POS to which the customer is assigned click Edit icon [image: edit] in the block header and select new POS from a list or Click Edit above account summary block, at the top of the page to go to edit mode.

[image: Change of POS assignment from Profile Detail Page]
To learn more about offline stores, see POS

Profile details

The Customer Profile details section provides the short customer account summary and information of customer provided during registration.

Block in the upper left corner, shows some factors describing Customer and their account summary, such as:

	First name

	Last name

	Current loyalty level

	Loyalty card number (if assigned)

	Email address

	Phone number (in one of acceptable format)

[image: Customer Account Summary]
Block below, provides a snapshot of customer personal information entered during registration process both required and optional.

Address information will appear in small window after clicking Show all profile details link.

Note

If the optional information (such as birth date, gender, address etc.) will not be completed during registration, the corresponding fields in this sections remain blank

To update customer data go to edit mode by clicking Edit icon [image: edit] in the block header or Click Edit above account summary block, at the top of the page

[image: Customer Profile Details]
The following details are displayed in this section:

	Profile details (displaying in block)

	First name

	Last name

	Birth date

	Gender

	Created at

	Profile details (after link clicking)

	Basic information displaying in block, and in addition address information:

	City

	State/Province

	Street name

	Building name

	Flat/Unit name

	Postal code

	Country

Segments

Segments box consists list of segments to which the customer is currently assigned.

To learn more about segments, see Segments

[image: Segments]

Available rewards

Available rewards tab contains view of Reward Campaigns available for particular customer, including cost in points to redeem reward and dates when reward is available.

[image: Available Rewards]
Click View icon [image: view] in the Action column to open the Reward Campaign detail information

[image: Reward Campaign Details]
To see the list of all rewards available for customer within Loyalty Program click All Reward Campaigns below the tab

To learn more about Points transfers, see Reward campaigns

Field description

	Field

	Description

	Name

	
Reward name, that is display to customer

	Active

	
Determines whether the reward is available to customers.

Option include: true/false

	Cost in points

	
Defines how much points customer must spend to redeem reward

	Limit

	
Information about the redeem rewards limit globally. Is associated with Limit per customer value.

For example, value 10 means that reward can be redeem only 10 times (by the same or different customers, what depends
on Limit per customer value)

	Limit per
customer

	
Information about the redeem rewards limit by single customer

For example, value 1 means that reward can be redeem only once by one customer, value 2 twice etc.

	Active from

	
Start date from which customer can redeem reward

	Active to

	
End date until which customer can redeem reward

	Actions

	
Open reward record in view mode to see reward campaign details

CUSTOMER LOYALTY ACTIVITY

	Introduction

	Loyalty

	Profitability

	Timeline

	Transactions

	Points transfers

	Available rewards

	Redeemed rewards

	:doc:`/userguide/customers/profile_details/loyalty/referred_customers

`

Introduction

In the middle part you will find customer data related to his activity in Loyalty Program such as loyalty points balance, transactions, points transfer and rewards (available and redeemed) summary.

[image: Assigned Merchant]

Loyalty

In Loyalty section you can view Loyalty Points balance in the customer’s account.

Depending on the Configuration (whether level is calculated with points or transactions) different values will be displayed.

Level is calculated with transactions

[image: Loyalty Points Balance]

	Total earned points

Total accumulated points assigned to the customer account thought various activity within the loyalty program based on Earning Rules.

Sum of active, locked, used and expired points.

	Active Points

Points that may be used to redeem a reward campaigns.

Depending on the Configuration, this value can be used to level recalculation instead Total points earned since last level recalculation amount.

	Used Points

Points redeemed by the Customer thought various Reward Campaigns within the loyalty program

	Expired Points

Points expired due to non-redemption of assigned active points.

Points will expire after number of days from date of adding Point transfer. Points lifetime is set in Open Loyalty Configuration

	Locked Points

Points earned through various activity within the loyalty program that cannot be used after passing selected locked time.

Points will be locked for number of days set in Open Loyalty Configuration, as a customer may return whole transaction or selected products.

Locked points are not used to calculate customer level. After passing selected locked time, points automatically get active. When points get active, a customer level will be recalculated.

Level is calculated with points

When you set up in Open Loyalty configuration to use points for level recalculation additional information about level expiration date and earned points within specified period amount will be displayed.

[image: Loyalty Points Balance]

	Total points earned since last level recalculation

Currently earned points from last downgrade date/level changed.

The displayed value is sum of all Active points earned within specified in Level downgrade settings period.

Depending on the Configuration, this value can be used to level recalculation instead Active points amount.

	Level will expire in

Number of days until customer level recalculation.

It is calculated since registration date or last downgrade date plus configured in Level downgrade settings number of days

Profitability

Profitability includes information about basic factors regarding customer transactions within the loyalty program.

[image: Customer Profitability]

	CLV (Customer Lifetime Value)

total amount of all registered transactions realized by the customer

	AVO (Average Value of Order)

average amount of all registered transactions realized by the customer

	Orders

total number of registered transactions (orders) realized by the customer within the Loyalty Program

Redeemed rewards

Redeemed rewards tab provides information about rewards (Reward Campaigns) that customer has redeemed, divided into used and delivered.

[image: Redeemed Rewards]
All rewards that customer redeemed appear in this tab as “delivered”.

When reward coupon days inactive parameter will pass, an empty checkbox appears, to be marked when customer redeems coupon.

Only when a customer uses the reward/discount code during a purchase, reward is treated as “used”.

On the Redeemed rewards list, Used rewards will have a marked checkbox in the column Use of coupon count, unlike to those Delivered, which will have an empty checkbox.

From the Admin Panel you can mark selected redeemed reward record as Used when customer used their coupon code during purchase, or you sent gift which customer selected from his cockpit etc.

Note

You can mark selected reward/coupon record as used or unused only if its status is Active

When coupon status changed to Expired none of the above operations is possible.

To mark coupon as used:

	In the Redeemed reward list, find the reward you want to mark as Used and click checkbox in the Use of coupons count column

[image: Used/Delivered reward]
To see the list of all redeemed rewards by customer within Loyalty Program click All Rewards below the tab.

To learn more about rewards, see Redeemed rewards

	Field

	Description

	Name

	
Reward name, that is display to customer

	Cost in points

	
Define how much points customer spent to redeem reward

	Status

	
Reward campaign coupon status

Option include: Active/Inactive/Expired

	Active from

	
Reward campaign start date from which customer can used reward, define during reward campaign creation in Activity section

	Active to

	
Reward campaign end date until which customer can used reward, define during reward campaign creation in Activity section

	Purchased at

	
The date when reward was redeemed

	Coupon

	
Discount code that was used

	Use of coupon
count

	
Define whether customer already used the reward or it’s only delivered and can be used by him

Referred customers

This view contains list of customers that you referred

[image: Referred customers]

Timeline

In this view you can see all operations that were related to the current customer.

For example:
- level changed,
- new transaction,
- earned points,
- spent points,
- expired points,
- ect.

[image: Timeline]

Transactions

Transactions is a tab which contains latest transaction data such as type, place and date of transaction, value of earned points etc. linked with customer

[image: Transactions view]

Field description

	Field

	Description

	Document number

	Unique transaction ID

	Document type

	
	Transaction type:

	
	Sell

	Return

	Purchase date

	Date of transaction

	POS

	POS where transaction was made

	Amount

	All transaction amount

	Points earned

	How many points Customer earned/lose for this transaction (order).

Transaction with the type “Sell” adds points, and “Return” subtracts

	Actions

	Open transaction record in view mode to see customers and purchased items details

Click View icon [image: view] in the Action column to open the transaction details – customer detail information and purchased items.

[image: Transaction Record Preview]
To see the list of all your customer transactions (not only the latest) click All Transactions below the tab.

To learn more about Transactions, see Transactions

Points transfers

Points transfers tab provides a view of latest points which customer gained or spent. Moreover, list contains information whether points are the result of Earning Rules (system) or they have been manually set by the Admin user (admin) and date until they will be locked.

[image: Points Transfers Lists]
To cancel points transfer click Remove icon [image: remove] in the Action column. System will display a message asked you to confirm the action.

[image: Removing Transfer Action]
After canceling, no action to canceled transfer record will be longer available and the Remove icon background changes color to blue. The same situation deals with Points transfers with “spending” type.

To see the list of all your customer points transfers (not only the latest) click All Points Transfer below the tab.

To add point transfer manually click Add new Points Transfer

To learn more about Points transfers, see Points transfer

Field description

Earning rules

This section of the guide provides an overview of the ways for customers to earn points – the engine of your Loyalty Program.

You’ll learn how to create and manage Earning Rule to accomplish many things, from rewarding high-value customers, to stopping points earning all together.

Earning Rules menu

	Introduction

	All earning rules

Earning Rules creation

You can create unlimited amount customizable ways for customers to earn points within Loyalty Program based on various conditions

	Earning rules types

	Set earning rule as the last one

Transactional rules:

	General spending rule

	Multiply earned points

	Multiply earned points by product labels

	Instant reward

	Product purchase

Non-transactional rules:

	Custom event rule

	Customer referral

	Event rule

	Geolocation

	QR code

Earning Rules modification

	Updating earning rules

	Activate / Deactivate earning rule

Custom event rule

Reward customer with defined amount of points for his action in external system. For example, share account with Facebook, add review for a product etc. If needed, you can also add repeatability limit to this rule type.

This Earning rule could be call only with API. Every run of API function will reward Customer with defined points.

To add new Custom event rule:

	Tap Earning rules on the Admin sidebar and choose Add earning rule. You can also add rule directly from All earning rules list by clicking Add earning rule at the top of the page

[image: Add Rule Options]
[image: Add Earning Rule Form]

	In Basic information section, do the following:

	Enter Name of the rule that will be displayed in views

	Provide a brief Description of the rule that explains how to award points and information when the rule is active (thereby using to points calculation)

	To activate the rule, in Active field select “Active” from the dropdown list

[image: Custom event rule]

	In Type details section set rule type as Custom event rule and complete details as follow:

	in Custom event name enter name of the rule (to be used with calling API function)

	provide number of Points that will be added after earning rule has been called

	You can limit how many times customer could be rewarded for the same action with the specified period of time. Mark Usage limit active checkbox to limit repeatability. Leave it blank to reward customer for this rule without limits.

	Period field is visible and required if Usage limit active is marked.

	It defines period of time within customer can be rewarded for this rule. Options include:

	
	1 day

	1 week

	1 month

	3 months

	6 months

	1 year

	Forever

	Limit field is visible and required if Usage limit active is marked.

Provided number defines how many times customer could be rewarded for this rule in specified period of time.

See Rule Types to learn more about Earning rules types

Note

If customer used the limit then rule will not be shown on available rules list in Customer cockpit

Note

once selected type can not be changed

	In Activity of rule section specify time boundaries when rule will be active

	if you want the rule to be active all the time mark All time active checkbox

	if you want the rule to be limited in time in Start at and End at fields specify dates between rule will be active

	In POS section, as an option you can assign an Earning rule to the existing POS. To do this, click POS field and choose store to which rule will be applied.

When a transaction comes from a specific POS, only earning rules assigned to this POS will be used to calculate points.

[image: Earning rule assignment to POS]

	In Target section specify group of customers for which rule will be used. For example, Gold members will get 2 times more points than Bronze

	In Target type choose from dropdown list Level or Segment to specify whether the rule will be active for customers assigned to particular level or segment.

	Depending on the Target type field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Earning rule target option]
[image: Earning rule target option]

	If applicable, in Earning rule photo section upload image for Earning rule

[image: Earning rule photo option]

	When it is done, tap SAVE

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

Event rule

Reward customer with defined amount of points for his action. Actions for which customer can get points are predefined in the Open Loyalty and related to events of your loyalty program.

For example, create an account, first purchase etc.

To add new Event rule:

	Tap Earning rules on the Admin sidebar and choose Add earning rule. You can also add rule directly from All earning rules list by clicking Add earning rule at the top of the page

[image: Add Rule Options]
[image: Add Earning Rule Form]

	In Basic informations section, do the following:

	Enter Name of the rule that will be displayed in views

	Provide a brief Description of the rule that explains how to award points and information when the rule is active (thereby using to points calculation)

	To activate the rule, in Active field select “Active” from the dropdown list

[image: Event rule]

	In Type details section set rule type as Event rule and complete details as follow:

	
	in Event name field select an event for which the customer will receive points. Options include:

	
	Account created

	Customer logged in

	First purchase

	Newsletter subscription

	provide amount of Points that will be earned for this event rule

See Rule Types to learn more about Earning rules types

Note

once selected type can not be changed

	In Activity of rule section specify time boundaries when rule will be active

	if you want the rule to be active all the time mark All time active checkbox

	if you want the rule to be limited in time in Start at and End at fields specify dates between rule will be active

	In POS section, as an option you can assign an Earning rule to the existing POS. To do this, click POS field and choose store to which rule will be applied.

When a transaction comes from a specific POS, only earning rules assigned to this POS will be used to calculate points.

[image: Earning rule assignment to POS]

	In Target section specify group of customers for which rule will be used. For example, Gold members will get 2 times more points than Bronze

	In Target type choose from dropdown list Level or Segment to specify whether the rule will be active for customers assigned to particular level or segment.

	Depending on the Target type field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Earning rule target option]
[image: Earning rule target option]

	If applicable, in Earning rule photo section upload image for Earning rule

[image: Earning rule photo option]

	When it is done, tap SAVE

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

Set rule as the last one

Note

this feature is related ONLY with transactional rules

If there are more than one Earning Rule to be applied and one of them has a flag “stoppable”, then this rule will be applied and stops any further rules according to sequence listed above.

When customer registers a transaction, Open Loyalty checks for Earning Rules that can be applied. Then Open Loyalty starts executing each Earning Rule. When executed Earning Rule has a flag “stoppable” it should be the last Earning Rule executed for that transaction which means any next Earning Rules should be skipped.

Exceptional case

By default only one of the following, the most “current” rule (edited as the last one) is used:

	Multiply earned points,

	Multiply earned points by product labels and

	Instant reward

But, if you add a “stoppable” flag to one of them and before points calculation you will also edit any of Multiply points rules or Instant reward (name, description, activity etc.), Open Loyalty recognizes the edited one as the most “current”and use it before the rule with stoppable flag. The behaviour is also related with more than one this rule type.

In this exceptional case, the sequence of points calculation can be as follow:

	If applicable, General spending rule

	Multiply earned points - rule edited today, the most “current”

	Multiply earned points by product labels - rule edited today, but before Multiply earned points rule edition

	2nd Instant reward - rule edited yesterday

	1st Instant reward - rule with stoppable flag added day before yesterday

General spending rule

Reward customer with defined amount of points for his order value. Allows to specify how many points customer can earn from 1 amount of currency.

If needed, you can exclude certain products (with define SKUs or labels) and delivery costs from the points calculation.

To add new General spending rule:

	Tap Earning rules on the Admin sidebar and choose Add earning rule. You can also add rule directly from All earning rules list by clicking Add earning rule at the top of the page

[image: Add Rule Options]
[image: Add Earning Rule Form]

	In Basic informations section, do the following:

	Enter Name of the rule that will be displayed in views

	Provide a brief Description of the rule that explains how to award points and information when the rule is active (thereby using to points calculation)

	To activate the rule, in Active field select “Active” from the dropdown list

[image: General Spending Rule]

	In Type details section set rule type as General spending rule and complete details as follow:

	In Point value enter ratio for calculating earned points based on purchased value. For example, if ratio is equal to 2 then user get 2 points for every 1$ spent.

	SKU’s provided in Excluded SKUs field will be excluded from the calculation of earned points

	Points can be calculated for the purchase of products with defined labels. Set Labels inclusion type to one of following:

	
	None

	product labels are not applicable. Points will be calculated for all purchased products (except excluded SKUs, if applicable)

	
	Exclude

	points will not be calculated for purchased products with defined labels

	
	Include

	points will be calculated for purchased products with defined labels

	Depending on the option chosen in Labels inclusion type field, appropriate field will be displayed:

	Has labels – when Include is selected in previous step

	Excluded labels – when Exclude is selected in previous step

	When None is selected in previous step, any field is not displayed

Both fields, Has labels and Excluded labels are pair of Key and Value.

	When Excluded delivery costs checkbox is selected then delivery cost will not be included in order value used for earned points calculation

	Min order value is currently not used

	If you marked Is last executed rule checkbox, then you add a “stoppable” flag to this rule.

It means, that if more than this transactional rule can be applied, any next transactional Earning Rules will be skipped (other general spending rules, multiply points rules, product purchase rule).

See Rule Types to learn more about Earning rules types

Note

once selected type can not be changed

	In Activity of rule section specify time boundaries when rule will be active

	if you want the rule to be active all the time mark All time active checkbox

	if you want the rule to be limited in time in Start at and End at fields specify dates between rule will be active

	In POS section, as an option you can assign an Earning rule to the existing POS. To do this, click POS field and choose store to which rule will be applied.

When a transaction comes from a specific POS, only earning rules assigned to this POS will be used to calculate points.

[image: Earning rule assignment to POS]

	In Target section specify group of customers for which rule will be used. For example, Gold members will get 2 times more points than Bronze

	In Target type choose from dropdown list Level or Segment to specify whether the rule will be active for customers assigned to particular level or segment.

	Depending on the Target type field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Earning rule target option]
[image: Earning rule target option]

	If applicable, in Earning rule photo section upload image for Earning rule

[image: Earning rule photo option]

	When it is done, tap SAVE

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

Exceptional case of stoppable flag

What if there are only general spending rules to be used and there are more than one?

All General spending rules have the same priority. It means, that to points calculation the most “current” rule is used. In that case, “current” means edited as the last one.

So, if you add a “stoppable” flag to 1st rule and before points calculation you will also edited 2nd and 3rd (name, description, activity etc.), Open Loyalty recognize the 2nd and 3rd as the more “current” and use them before the rule with stoppable flag.

Note

Another words, any edited General spending rule will be used before that one with “stoppable” flag, if edition was made after you add a flag to the rule.

In this exceptional case, the sequence of points calculation can be as follow:

	3rd General spending rule - rule edited today, the most “current”

	2nd General spending rule - rule edited yesterday, more “current” than the flag rule

	1st General spending rule - rule with stoppable flag added day before yesterday

Geolocation

Reward customer with defined amount of points for his location. Locations for which customer can get points are defined in the Open Loyalty and related to radius.

This Earning rule could be call only with API. Every run of API function will reward Customer with defined points.

Rule can be used only when mechanism of getting customer location is implemented

To add new Geolocation rule:

	Tap Earning rules on the Admin sidebar and choose Add earning rule. You can also add rule directly from All earning rules list by clicking Add earning rule at the top of the page

[image: Add Rule Options]
[image: Add Earning Rule Form]

	In Basic information section, do the following:

	Enter Name of the rule that will be displayed in views

	Provide a brief Description of the rule that explains how to award points and information when the rule is active (thereby using to points calculation)

	To activate the rule, in Active field select “Active” from the dropdown list

[image: Geolocation]

	In Type details section set rule type as Geolocation and complete details as follow:

	Latitude defining the central point to which the location applies

	Longitude defining the central point to which the location applies

	A circular area having an extent determined by the length of the Radius from a specified by latitude and longitude central point.

Customer can get points only when he is in radius area

	Amount of Points that will be earned for this event rule

	Period defining the period of the customer’s usage(possible values to select: 1 Day, 1 Month, 1 Week, 1 year, 3 months, 6 months, Forever

Note

once selected type can not be changed

	In Activity of rule section specify time boundaries when rule will be active

	if you want the rule to be active all the time mark All time active checkbox

	if you want the rule to be limited in time in Start at and End at fields specify dates between rule will be active

	In POS section, as an option you can assign an Earning rule to the existing POS. To do this, click POS field and choose store to which rule will be applied.

When a transaction comes from a specific POS, only earning rules assigned to this POS will be used to calculate points.

[image: Earning rule assignment to POS]

	In Target section specify group of customers for which rule will be used. For example, Gold members will get 2 times more points than Bronze

	In Target type choose from dropdown list Level or Segment to specify whether the rule will be active for customers assigned to particular level or segment.

	Depending on the Target type field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Earning rule target option]
[image: Earning rule target option]

	If applicable, in Earning rule photo section upload image for Earning rule

[image: Earning rule photo option]

	When it is done, tap SAVE

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

Instant reward

Reward customer with defined reward campaign for his order. Rule can be related with any active Reward campaign, but only one at once.

To add new Instant reward:

	On the Admin sidebar, tap Earning rules. Then, choose Add earning rule. You can also add rule directly from All earning rules list by clicking Add earning rule at the top of the page

[image: Add Rule Options]
[image: Add Earning Rule Form]

	In Basic informations section, do the following:

	Enter Name of the rule that will be displayed in views

	Provide a brief Description of the rule that explains how to award points and information when the rule is active (thereby using to points calculation)

	To activate the rule, in Active field select “Active” from the dropdown list

[image: Instant reward]

	In Type details section set rule type as Instant reward

	If you marked Is last executed rule checkbox, then you add a “stoppable” flag to this rule.

The behavior of the flag is the same like in Multiply earned points rule

See Rule Types to learn more about Earning rules types

Note

Another words, only these rules that occur in the sequence before the Instant reward with a flag and the rule itself will be used – in that case, if applicable, General spending rule, Instant reward rules edited after added a flag and rule with a flag itself

Note

once selected type can not be changed

	In Activity of rule section specify time boundaries when rule will be active

	if you want the rule to be active all the time mark All time active checkbox

	if you want the rule to be limited in time in Start at and End at fields specify dates between rule will be active

	In POS section, as an option you can assign an Earning rule to the existing POS. To do this, click POS field and choose store to which rule will be applied.

When a transaction comes from a specific POS, only earning rules assigned to this POS will be used to calculate points.

[image: Earning rule assignment to POS]

	In Target section specify group of customers for which rule will be used. For example, Gold members will get 2 times more points than Bronze

	In Target type choose from dropdown list Level or Segment to specify whether the rule will be active for customers assigned to particular level or segment.

	Depending on the Target type field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Earning rule target option]
[image: Earning rule target option]

	If applicable, in Earning rule photo section upload image for Earning rule

[image: Earning rule photo option]

	In Reward campaign section select from a dropdown active reward to associate with Instant reward rule.

Selected reward will appear in Customer Redeemed reward instantly after his transaction will be registered.

[image: Reward campaign section to be associated with Instant reward]

Note

Instant reward rule conditions and associated with it Reward campaign conditions must be met to let customer receive this reward.

Another words, after customer transaction registered, Open Loyalty verify e.g. if customer has appropriate level/segment, if transaction date is in defined rule/reward Activity time boundaries etc.

If any of conditions is not met, rule is not used and customer doesn’t receive reward.

Please see Reward campaigns for more information.

	When complete, tap SAVE

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

In exceptional case also Multiply earned points rule and Multiply earned points by product labels rule can be used – please see Exceptional case box.

Exceptional case of stoppable flag

When also Multiply earned points rules will be used?

The same case as was described in Multiply earned points rule exception. If you add a “stoppable” flag to this rule and before points calculation you will also edited Multiply earned points and Multiply earned points by product labels (name, de-scription, activity etc.), Open Loyalty recognize the edited once as the most “current” and use it before the rule with stoppable flag.

In this exceptional case, the sequence of points calculation can be as follow:

	If applicable, General spending rule

	Multiply earned points - rule edited today, the most “current”

	Multiply earned points by product labels - rule edited today, before Multiply earned points rule edition

	Instant reward - rule with stoppable flag

Multiply earned points

Multiply points that customer receive for purchase products with specified SKU. The rule is related to General spending rule.

The rule defines for which purchase products, points (defined in General spending rule) are to be multiplied.

To add new Multiply earned points rule:

	Tap Earning rules on the Admin sidebar and choose Add earning rule. You can also add rule directly from All earning rules list by clicking Add earning rule at the top of the page

[image: Add Rule Options]
[image: Add Earning Rule Form]

	In Basic informations section, do the following:

	Enter Name of the rule that will be displayed in views

	Provide a brief Description of the rule that explains how to award points and information when the rule is active (thereby using to points calculation)

	To activate the rule, in Active field select “Active” from the dropdown list

[image: multiply earned points]

	In Type details section set rule type as Multiply earned points and complete details as follow:

	Rule will be applied only for listed products with selected **SKU**s

	Points gained for purchase product will be multiplied by factor provided in Multiplier field

	If you marked Is last executed rule checkbox, then you add a “stoppable” flag to this rule.

It means, that if more than this transactional rule can be applied, next transactional Earning Rule will be skipped (product purchase, multiply earned points by product labels) and Multiply earned points rule will be used as the last one (according to the sequence).

See Rule Types to learn more about Earning rules types

Note

Another words, only these rules that occur in the sequence before the Multiply earned points rule with a flag and the rule itself will be used – in that case, if applicable, General spending rule, Multiply earned points rules edited after added a flag and rule with a flag itself

Note

once selected type can not be changed

	In Activity of rule section specify time boundaries when rule will be active

	if you want the rule to be active all the time mark All time active checkbox

	if you want the rule to be limited in time in Start at and End at fields specify dates between rule will be active

	In POS section, as an option you can assign an Earning rule to the existing POS. To do this, click POS field and choose store to which rule will be applied.

When a transaction comes from a specific POS, only earning rules assigned to this POS will be used to calculate points.

[image: Earning rule assignment to POS]

	In Target section specify group of customers for which rule will be used. For example, Gold members will get 2 times more points than Bronze

	In Target type choose from dropdown list Level or Segment to specify whether the rule will be active for customers assigned to particular level or segment.

	Depending on the Target type field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Earning rule target option]
[image: Earning rule target option]

	If applicable, in Earning rule photo section upload image for Earning rule

[image: Earning rule photo option]

	When it is done, tap SAVE

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

In exceptional case also Multiply earned points by product labels also can be used – please see Exceptional case box.

Exceptional case of stoppable flag

When also Multiply earned points by product labels or Instant reward will be used?

Multiply earned points, Multiply earned points by product labels and Instant reward rules have the same priority. It means, that to points calculation the most “current” rule is used. In that case, “current” means edited as the last one.

So, if you add a “stoppable” flag to this rule and before points calculation you will also edited Multiply earned points by product labels (name, description, activity etc.), Open Loyalty recognize the second one as the most “current” and use it before the rule with stoppable flag.

In this exceptional case, the sequence of points calculation can be as follow:

	If applicable, General spending rule

	Multiply earned points by product labels - edited rule, the most “current”

	Multiply earned points - rule with stoppable flag

Multiply earned points by product labels

Multiply points that customer receive for purchase products with specified labels. The rule is related to General spending rule. The rule defines for which purchased products, points (defined in rules above) are to be multiplied.

Rule can contains more than one product label. Different Labels are linked with OR condition - at least one of labels linked with this rule must be true to let customer earn points. If more than one is true, points are multiply in order by all multipliers.

For example

if you have 2 labels assigned to this rule which are true, points gathered from purchases are multiply firstly by multiplier assigned to 1st label, and then again multiply by multiplier assigned to 2nd label.

To add new Multiply earned points by product labels:

	Tap Earning rules on the Admin sidebar and choose Add earning rule. You can also add rule directly from All earning rules list by clicking Add earning rule at the top of the page

[image: Add Rule Options]
[image: Add Earning Rule Form]

	In Basic informations section, do the following:

	Enter Name of the rule that will be displayed in views

	Provide a brief Description of the rule that explains how to award points and information when the rule is active (thereby using to points calculation)

	To activate the rule, in Active field select “Active” from the dropdown list

[image: Multiply earned points by product labels]

	In Type details section set rule type as Multiply earned points by product labels and complete details as follow:

	
	To create Label, tap Add label multiplier and do the following:

	
	Type label Key, which is a product label name

	Type label Value
For example: Key – trousers, Value – jeans

	Points gained for purchase product will be multiplied by factor provided in Multiplier field

Repeat the process for all labels you want to use in your Loyalty Program

	If you marked Is last executed rule checkbox, then you add a “stoppable” flag to this rule.

The behavior of the flag is the same like in Multiply earned points rule

See Rule Types to learn more about Earning rules types

Note

Another words, only these rules that occur in the sequence before the Multiply earned points by product labels rule with a flag and the rule itself will be used – in that case, if applicable, General spending rule, Multiply earned points by product labels rule edited after added a flag and rule with a flag itself.

Note

once selected type can not be changed

	In Activity of rule section specify time boundaries when rule will be active

	if you want the rule to be active all the time mark All time active checkbox

	if you want the rule to be limited in time in Start at and End at fields specify dates between rule will be active

	In POS section, as an option you can assign an Earning rule to the existing POS. To do this, click POS field and choose store to which rule will be applied.

When a transaction comes from a specific POS, only earning rules assigned to this POS will be used to calculate points.

[image: Earning rule assignment to POS]

	In Target section specify group of customers for which rule will be used. For example, Gold members will get 2 times more points than Bronze

	In Target type choose from dropdown list Level or Segment to specify whether the rule will be active for customers assigned to particular level or segment.

	Depending on the Target type field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Earning rule target option]
[image: Earning rule target option]

	If applicable, in Earning rule photo section upload image for Earning rule

[image: Earning rule photo option]

	When it is done, tap SAVE

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

In exceptional case also Multiply earned points rule also can be used – please see Exceptional case box

Exceptional case of stoppable flag

When also Multiply earned points or Instant reward will be used?

The same case as was described in Multiply earned points rule exception. If you add a “stoppable” flag to this rule and before points calculation you will also edited Multiply earned points (name, description, activity etc.), Open Loyalty recognizes the second one as the most “current” and use it before the rule with stoppable flag.

In this exceptional case, the sequence of points calculation can be as follow:

	If applicable, General spending rule

	Multiply earned points - edited rule, the most “current”

	Multiply earned points by product labels - rule with stoppable flag

Product purchase

Reward customer with defined amount of points for purchase specified products. Rule can be related to Multiply earned points rule and General spending rule.

To add new Product purchase rule:

	Tap Earning rules on the Admin sidebar and choose Add earning rule. You can also add rule directly from All earning rules list by clicking Add earning rule at the top of the page

[image: Add Rule Options]
[image: Add Earning Rule Form]

	In Basic informations section, do the following:

	Enter Name of the rule that will be displayed in views

	Provide a brief Description of the rule that explains how to award points and information when the rule is active (thereby using to points calculation)

	To activate the rule, in Active field select “Active” from the dropdown list

[image: Product purchase]

	In Type details section set rule type as Product purchase and complete details as follow:

	Rule will be applied only for listed products with selected **SKU**s

	in Points field enter predefined amount of points that will be earned

	If you marked Is last executed rule checkbox, then you add a “stoppable” flag to this rule.

It means, that if more than this transactional rule can be applied, next transactional Earning Rule will be skipped and Product purchase will be used as the last one (according to the sequence).

See Rule Types to learn more about Earning rules types

Note

Another words, only these rules that occur in the sequence before the Product purchase rule with a flag and rule itself will be used – in that case, if applicable, General spending rule, both Multiply earned points rules, Product purchase rules edited after added a flag and rule with a flag itself

Note

once selected type can not be changed

	In Activity of rule section specify time boundaries when rule will be active

	if you want the rule to be active all the time mark All time active checkbox

	if you want the rule to be limited in time in Start at and End at fields specify dates between rule will be active

	In POS section, as an option you can assign an Earning rule to the existing POS. To do this, click POS field and choose store to which rule will be applied.

When a transaction comes from a specific POS, only earning rules assigned to this POS will be used to calculate points.

[image: Earning rule assignment to POS]

	In Target section specify group of customers for which rule will be used. For example, Gold members will get 2 times more points than Bronze

	In Target type choose from dropdown list Level or Segment to specify whether the rule will be active for customers assigned to particular level or segment.

	Depending on the Target type field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Earning rule target option]
[image: Earning rule target option]

	If applicable, in Earning rule photo section upload image for Earning rule

[image: Earning rule photo option]

	When it is done, tap SAVE

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

In exceptional case also more than one product purchase rule can be used – please see Exceptional case box.

Exceptional case of stoppable flag

What if there are more than one Product purchase rule to be used?

All Product purchase rules have the same priority. It means, that to points calculation the most “current” rule is used. In that case, “current” means edited as the last one.

So, if you add a “stoppable” flag to 1st rule and before points calculation you will also edited 2nd and 3rd (name, description, activity etc.), Open Loyalty recognizes the 2nd and 3rd as the more “current” and use them before the rule with stoppable flag.

Note

Another words, any edited Product purchase rule will be used before that one with “stoppable” flag, if edition was made after you add a flag to the rule

In this exceptional case, the sequence of points calculation can be as follow:

	If applicable, General spending rule

	If applicable, Multiply earned points

	3rd Product purchase rule - rule edited today, the most “current”

	2nd Product purchase rule - rule edited yesterday, more “current” than the flag rule

	1st Product purchase rule - rule with stoppable flag, added day before yesterday

QR code

Reward customer with defined amount of points for scanning QR code e.g. of product. Code for which customer can get points is defined in the Open Loyalty.

If needed, you can also add repeatability limit to this rule type.

This Earning rule could be called only with API. Every run of API function will reward Customer with defined points.

To add new QR code rule:

	Tap Earning rules on the Admin sidebar and choose Add earning rule. You can also add rule directly from All earning rules list by clicking Add earning rule at the top of the page

[image: Add Rule Options]
[image: Add Earning Rule Form]

	In Basic informations section, do the following:

	Enter Name of the rule that will be displayed in views

	Provide a brief Description of the rule that explains how to award points and information when the rule is active (thereby using to points calculation)

	To activate the rule, in Active field select “Active” from the dropdown list

[image: QR code]

	In Type details section set rule type as QRcode and complete details as follow:

	QR Code (to be used with calling API function)

	Number of Points that will be added after earning rule has been triggered

	You can limit how many times customer could be rewarded for the same action with the specified period of time. Mark Usage limit active checkbox to limit repeatability. Leave it blank to reward customer for this rule without limits.

	Period field is visible and required if Usage limit active is marked.

	It defines period of time within customer can be rewarded for this rule. Option include:

	
	1 day

	1 week

	1 month

	Limit field is visible and required if Usage limit active is marked.

Provided number defines how many times customer could be rewarded for this rule in specified period of time.

See Rule Types to learn more about Earning rules types

Note

If customer used the limit then rule will not be shown on available rules list in Customer cockpit

Note

once selected type can not be changed

	In Activity of rule section specify time boundaries when rule will be active

	if you want the rule to be active all the time mark All time active checkbox

	if you want the rule to be limited in time in Start at and End at fields specify dates between rule will be active

	In POS section, as an option you can assign an Earning rule to the existing POS. To do this, click POS field and choose store to which rule will be applied.

When a transaction comes from a specific POS, only earning rules assigned to this POS will be used to calculate points.

[image: Earning rule assignment to POS]

	In Target section specify group of customers for which rule will be used. For example, Gold members will get 2 times more points than Bronze

	In Target type choose from dropdown list Level or Segment to specify whether the rule will be active for customers assigned to particular level or segment.

	Depending on the Target type field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Earning rule target option]
[image: Earning rule target option]

	If applicable, in Earning rule photo section upload image for Earning rule

[image: Earning rule photo option]

	When it is done, tap SAVE

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

Customer referral

Referral (refer a friend, member get member) functionality allows to reward Customers for invitation other Customers to Loyalty program.

It allows to give prize either referrer (Customer who sent invitation) and referred person (Customer who responded with action to invitation).

Functionality allow to reward for different actions e.g.:

	Referred Customer register new account in OL

	Referred Customer make first purchase in OL (first transaction)

	Referred Customer make purchase in OL (every transaction)

To add new Customer referral rule:

	Tap Earning rules on the Admin sidebar and choose Add earning rule. You can also add rule directly from All earning rules list by clicking Add earning rule at the top of the page

[image: Add Rule Options]
[image: Add Earning Rule Form]

	In Basic informations section, do the following:

	Enter Name of the rule that will be displayed in views

	Provide a brief Description of the rule that explains how to award points and information when the rule is active (thereby using to points calculation)

	To activate the rule, in Active field select “Active” from the dropdown list

[image: Customer referral]

	In Type details section set rule type as Customer referral and complete details as follow:

	
	In Event name field select an event for which the customer will receive points. Options include:

	
	Every purchase after the first

	First purchase

	After registration and activation

	
	In Reward field select who should receive points for this action. Options include:

	
	Referred

	Referrer

	Both

	Provide amount of Points that will be earned for this event rule

See Rule Types to learn more about Earning rules types

Note

once selected type can not be changed

	In Activity of rule section specify time boundaries when rule will be active

	if you want the rule to be active all the time mark All time active checkbox

	if you want the rule to be limited in time in Start at and End at fields specify dates between rule will be active

	In POS section, as an option you can assign an Earning rule to the existing POS. To do this, click POS field and choose store to which rule will be applied.

When a transaction comes from a specific POS, only earning rules assigned to this POS will be used to calculate points.

[image: Earning rule assignment to POS]

	In Target section specify group of customers for which rule will be used. For example, Gold members will get 2 times more points than Bronze

	In Target type choose from dropdown list Level or Segment to specify whether the rule will be active for customers assigned to particular level or segment.

	Depending on the Target type field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Earning rule target option]
[image: Earning rule target option]

	If applicable, in Earning rule photo section upload image for Earning rule

[image: Earning rule photo option]

	When it is done, tap SAVE

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

Earning rules types

In general, Earning rules can be divided into two types:

	
	Transactional rules

	related to transactions made by customer e.g. transaction total amount, purchased products etc.

	
	Non-transactional rules

	related to other customer data and his activity within loyalty program e.g. refer a friend, his friend registration/purchases, newsletter subscription, first purchase, account created etc.

During creation of rule you must specify its type, describing conditions for awarding points. Every rule type has its own required fields (conditions) that must be filled.

[image: Rule Types]

Transactional rules

Open Loyalty offers following standard types:

	
	General spending rule

	Customer could receive points for order value

More information about rule creation here

	
	Multiply earned points

	Customer could receive multiple points for product with specified SKU

More information about rule creation here

	
	Multiply earned points by product labels

	Customer could receive multiple points for product with specified labels

More information about rule creation here

	
	Instant reward

	Customer could receive any reward campaign for his transaction registered within Loyalty Program

More information about rule creation here

	
	Product purchase

	Customer could receive given amount of points for specified product

More information about rule creation here

The sequence of points calculation is as follows

	Firstly, if applicable, customer receives points from General spending rule

	Secondly, if applicable, points are multiply based on Multiply earned points rule, or based on labels multipliers from Multiply earned points by product labels. Or reward is assigned from Instant reward rule

	Finally, if applicable, customer receives points from Product purchase rule

Note

Rules from the 2nd step of sequence:

	Multiply earned points,

	Multiply earned points by product labels and

	Instant reward

have the same priority. It means, that to points calculation by default only one of them, the most “current” rule is used.

In that case, “current” means edited as the last one.

Non-transactional rules

Open Loyalty offers following standard types:

	
	Custom event rule

	Customer could receive points for external actions

More information about rule creation here

	
	Customer referral

	Referred and/or Referrer customer could receive points for the action

More information about rule creation here

	
	Event rule

	Customer could receive points for specified actions

More information about rule creation here

	
	Geolocation

	Customer could receive points for his location

More information about rule creation here

	
	QRcode

	Customer could receive points for scanning define QR codes

More information about rule creation here

Customer level creation & edition

	Updating earning rules

	Activate / Deactivate earning rule

Activate / Deactivate earning rule

Any rule from the list can be activated and deactivated by Admin user.

To activate/deactivate rule:

	Tap Earning rules on the Admin sidebar and choose All earning rules.

You can also deactivate/activate the rule from Edit mode

	In the Earning rules list, find the rule to be deactivated and click Active in the Active column.

The button in the column changes to Inactive and appears as a grey-out.

[image: Active Column]

Warning

When you deactivate rule, customers’ will not earned points based on this rule terms

	To activate the rule click Inactive in the Active column.

The button in the column changes to Active and appears as a red.

Updating earning rules

You can edit information regarding earning rule used within your Loyalty Program, including all theirs data provided during rule creation process, except the rule type.

[image: Earning Rule editing]

To edit an Earning Rule:

	Tap Earning rules on the Admin sidebar and choose All earning rule

	In the Earning Rules list, find the rule to be edited and click Edit icon [image: edit] in the Action column to open the rule in edit mode

	Make any necessary changes to the rule

	When it is done, tap SAVE

All earning rules

The All earning rules grid provides information about type and activity of all Earning Rules within Loyalty Program. Moreover, list contains brief description about each one and allows to preview and modify rule detail.

[image: Earning Rules]
Use the standard controls to sort the list and apply action (preview and modify) to selected rule records.

Pagination controls appear if there are more rule records than fit on the page, and are used to move from one page to the next.

Field description

	Field

	Description

	Name

	
Name of the rule displayed in views

	Description

	
Brief rule description

	Active

	
Rule current status. Option include: Active/Inactive

Only Active rules are using for calculating earned points

	Start at

	
Start date from which rule is active and can be used to calculate points

	End at

	
End date until rule is active.

After that date rule become inactive and can’t be used to calculate points

	Type

	
Rule type.

Options include:

	Custom event rule

	Customer referral

	Event rule

	General spending rule

	Geolocation

	Instant reward

	Multiply earned points

	Multiply earned points by product labels

	Product purchase

	QRCode

To learn more about the rule types, please see
Rule Types

	Actions

	
The operations that can be applied to selected rule.

Options include:

	edit rule data

	view rule details information

Customers Menu

	Introduction

	All earning rules

Introduction

Earning rules define ways and conditions for customers to earn points.

Points can be awarded for a wide range of transaction and customer activities, and the configuration can be set to control the point allotment, balance, and expiration.

You can add point multipliers, eligibility criteria and even exclude certain products or customers.

Customers can redeem points toward rewards, based on the condition (cost points) that you establish.

[image: Earning Rules]

To display the Earning rules menu:

Tap Earning rules on the Admin sidebar and choose All earning rules

Menu options:

All earning rules

Lists all Earning Rules within your loyalty program with additional information regarding its activity, conditions and general information

[image: Earning Rules]

Add earning rule

Lists all data that need to be filled out to add new earning rule

[image: Add Earning Rule]

Welcome

Open Loyalty is a technology for loyalty solutions. It’s a loyalty platform in open source, with ready-to-use gamification and loyalty features, easy to set up and customize, ready to work online and off-line. Open Loyalty is an open source solution that can be easy integrated with eCommerce or can be used as a standalone solution.

There is a variety of applications for Open Loyalty. Based on it you can build loyalty solutions like loyalty modules for eCommerce, full loyalty programs for off-line and online, motivational programs for the sales department or customer care programs with a mobile application.

POS Cockpit

Use the POS Cockpit and run your loyalty app in your off-line stores

[image: pos cockpit]

Admin Cockpit

Use the Admin Cockpit to manage your loyalty application

[image: admin cockpit]

Client Cockpit

Use the Client Cockpit and create a dedicated web portal for your customers

[image: client cockpit]

API & Connectors

Connect Open Loyalty to eCommerce platforms, ERP systems, mobile applications, or any external system

[image: api]

Getting started

This section of the guide introduces your Loyalty Platform Admin and walks you through the basic configuration settings. You’ll get an overview of the resources that are available to you as an Admin of the Open Loyalty and how to log into your Admin account. Finally, you’ll learn the concepts of loyalty platform and configuration scope, and establish best practices for project standards and requirements.

Welcome

	Welcome

Open Loyalty Admin

	Open Loyalty admin

	Admin sign in

	Your Admin account

	Admin sidebar

	Admin workspace

	Dashboard

	Grid controls

	Actions controls

Open Loyalty Settings

	CONFIGURATION

	Admins

	Access Control List (ACL)

	Role Resources

	Translations

	Message Templates

	Audit log

	Stores

Actions controls

When working with a collection of records in the grid, you can use the Actions control to apply an operation to the records. The Actions control lists each operation that is available for the specific type of data.

For example, for Customer records, you can use the Actions control to edit basic information of a selected customer, view the customer account form, or to deactivate record without a possibility to activate them again.

[image: Applying an Action to selected record]

Actions by Grid

	Menu

	List

	Actions

	Customers

	
	All Customers

	
	Edit customer

	View Customer Account details

	Deactivate/Activate customer

	Unlink manually assigned level - optional

	Levels

	
	All Levels

	
	Edit level

	Export customers to CSV

	Points transfers

	
	All points transfers

	
	View Points transfer details

	Cancel transfer

	Transactions

	
	All transactions

	
	Edit transaction labels

	View Transaction details

	Earning rules

	
	All earning rules

	
	Edit earning rule

	View earning rule details

	POS

	
	All POS

	
	Edit POS

	Merchants

	
	All merchants

	
	Remove merchant account

	Edit Merchant

	Segments

	
	All segments

	
	Delete selected segment

	Edit segment

	Export customers to CSV

	Reward campaigns

	
	All reward campaigns

	
	View campaign details

	Edit reward campaign

	Buy reward campaign for client

	Redeemed rewards

	
	View customer address details

	All campaign categories

	
	Edit campaign category

Your Admin account

Your Admin account was initially set up during the installation. You can personalize your username and password, and update your first and last name, email address and phone number at any time.

To edit your account information:

	In the upper-right corner, tab the Account icon and choose Edit your account on the menu.

	Make any necessary changes to your profile information. If you change your password, make sure to write it down.

	When it is done, tap SAVE

[image: Admin profile]

Warning

	Acceptable Phone Number formats:

	
	“+ country code” “local number” e.g. +48123456789

	“country code” “local number” e.g. 48123456789

	only “local number” e.g. 123456789

Admin sidebar

The sidebar on the left is the main menu for your Loyalty Platform Admin and is designed for both desktop and mobile devices. The menu provides access to all the tools you need to manage your loyalty programs on a daily basis.

Dashboard

The Dashboard provides a quick overview of the customer’s activity in your loyalty programs and is usually the first page that appears when you log in to the Admin

[image: Dashboard]

Customers

The Customers menu is where you can manage customer registered in your loyalty programs, and see referred customers list

[image: Customers]

Levels

The levels menu is where you manage and define Customer levels with discounts and rewards

[image: Levels]

Points Transfers

The Points Transfer menu includes tools to control everything related to your points transfer operation

[image: transfers]

Transactions

The Transaction menu provides an overview of all data on offline and online transactions registered on customers

[image: Transactions]

Earning Rules

The Earning Rules menu is where you set up rules for earning points based on transactions and behavior of Customers

[image: Earning rules]

POS

The POS menu controls data related to your online and offline stores including localization and customers transaction values that were processed in POS

[image: POS]

Merchants

The Merchants menu is where you can manage merchants and assigned them to particular POS

[image: Merchants]

Segments

The Segments menu is where you create customer segments based on customer transactions or behavior

[image: Segment]

Reward Campaigns

The Reward Campaign menu is where you manage rewards available in your loyalty application, decide who can redeem rewards, and when

[image: Rewards]

Admin sign in

The first thing you will learn is how to sign in and out of the Admin, and to reset your password. All of the instructions in the rest of this guide are written for a user with full administrative privileges, and begin with the assumption that you are logged in to the Admin.

[image: Admin Sign in]

To sign in to the Admin:

	In the address bar of your browser, enter the URL that was specified during the installation, followed by the base URL of your store’s Admin.

You can bookmark the page or save a shortcut on your desktop for easy access.

The default Admin URL looks as follow:

https://www.domain.com/admin

	Enter your Admin Login and Password

	If you want to log in automatically every time you open the website without needing to enter your login and password mark Keep me logged in checkbox

	Tap SIGN IN

To reset your password:

[image: Forgot password]

	If you forget your password, click the Forgot password? Link

	Enter the Email Address that is associated with the Admin account

	Tap Recover Password

If an account is associated with the email address, an email with recovery password will be sent to reset your password.

Note

Your Admin password must be eight or more characters long, and contain at least one upper case letter, one numeric character and
one special character.

Note

OL can be configured not to send password recovery messages for Customers and Sellers, but Admin password recovery
should work anyway. If the email does not arrive, please check your email configuration.

To sign out of the Admin:

In the upper-right corner, tab the Account icon. Then on the menu, choose Logout

[image: Logout]
When you logout, the Sign-In page returns.

Admin workspace

The Admin workspace provides access to all the tools, data, and content that you need to run your loyalty platform. The main pages have a grid that lists the data for the section, with a set of tools to search, sort, filter, select, and apply actions.

[image: Admin workspace]

Workspace Controls

	Control

	Description

	Search / Filter

	
The filters in the header of each column can be used to limit the list to

specific values. You can simply type the value you want to find and press Enter

	Sort

	
The header of mostly column can be used to sort the list in ascending

or descending order

	Paginate

	
The pagination controls are used to view the additional pages of results

	Actions

	
The Actions control applies an operation to selected record

Dashboard

The dashboard is the default startup page for the Admin – the first page that appears when you log in to the Admin. The dashboard gives an overview of the customer’s activity in your loyalty programs.

[image: dashboard]
The default view for the dashboard is shown for the All stores. You can change the view to see the data for the different stores.

The blocks at the top of the page provide a snapshot of:

	number of all active points

Active points is the total number of points which can be reedeemed (without expired and cancelled points).
- number of all issued points
Issued points is the total number of added points (without cancelled points)
- number of all burned points

Burned points is the total number of reedemed points (without cancelled points)
- number of all expired points
Expired points is the total number of expired points(without expiring points)
- number of all pending points
Pending points is the total number of pending points (waiting for activation)
- number of all spending(total) points
Spending(total) is the total value of gross values from transactions
- number of all members with no transactions
Members with no transactions is the total number of customers without any transaction
- number of all members(total)
Members (total) is the total number of customers
- number of all transactions(matched)
Transactions (matched) is the total number of transaction which are matched with some customer

The charts below show the number of members or points in the timeline on the view per day/per month/per year. You can view the amount of customers or points by hovering your mouse over any day/month/year.

[image: dashboard]
The chart shows the number of new customer accounts within 30 days in the timeline.

[image: dashboard]
The chart shows the number of issued points within 30 days in the timeline.

[image: dashboard]
The chart shows the number of burned points within 30 days in the timeline.

[image: dashboard]
The chart shows the number of pending points within 30 days in the timeline.

[image: dashboard]
The chart shows the number of expired and expiring points within 30 days in the timeline.

The tabs at the bottom provide a quick overview of your Customer Levels list, associated to various benefits such as discounted fees and credentials for the customer to reach this value. To learn more about customer Levels, see Levels

Grid controls

Admin pages that manage data display a collection of records in a grid. The controls at the top of each column can be used to sort the data. The current sort order is indicated by an ascending or descending arrow in the column header. The Action column lists operations that can be applied to an individual record.

[image: Customer Grid]

To sort the list:

	Tap any column header. The arrow indicates the current order as either ascending or descending

	Use the pagination controls to view additional pages in the collection

To paginate the list:

	Tap Next and Previous to page through the list, or click a specific Page Number

[image: Pagination options]

To search the list:

	In the selected column in the field under column header type the value you want to find

	To find a close match, enter the few letters/signs of what you want to find

	To find an exact match, enter the exact word/number you want to find

	You can put as many values under different columns headers as needed to describe the conditions that must be met for the search result. Search values from each column create an AND Condition rule. It means that in search results only records matching all entered values are displayed.

[image: Customer search controls]

Open Loyalty Admin

	Open Loyalty admin

	Admin sign in

	Your Admin account

	Admin sidebar

	Admin workspace

	Dashboard

	Grid controls

	Actions controls

Open Loyalty admin

Your store Admin is the password-protected back office where you can set up points rule, reward campaigns, manage customers, and perform other administrative tasks. All basic configuration tasks and loyalty campaign management operations are performed from the Admin.

Your initial sign-in credentials were set up during the Open Loyalty installation. If you forget your password, a temporary password can be sent to the email address that is associated with the account.
There will be an attempt to send this message even if you disable sending of password reset message through the Admin Cockpit.

[image: Admin dashboard]

Contents:

	Open Loyalty admin

	Admin sign in

	Your Admin account

	Admin sidebar

	Admin workspace

	Dashboard

	Grid controls

	Actions controls

Access Control List (ACL)

Note

Admins roles and permissions (ACL settings) are related only to Admin Cockpit admins

Open Loyalty platform uses roles and permissions to create different levels of access to the Admin Cockpit. When your platform is first installed, you receive a Super admin role that has full permissions and give you full administrative access.

However, you can restrict the level of permissions for other admin users, who work with you. For example, a customer service can given access to only the Customers, but not to areas with settings and earning rules.

Note

To give someone restricted access to the Admin, the first step is to create a role that has the appropriate level of permissions.

After the role is saved, you can add new admins and assign the restricted role to grant them limited access to the Admin.

If an Admin user’s access is restricted to specific sections and/or elements, the sections and elements for which they are not authorized will either not be visible to them, or grayed-out as inactive.

[image: Admin Roles]

Note

The grid lists all the existing roles. After the first is installed, Super admin is the only role available.

New role creation

To add new Role:

	Tap the Settings icon [image: settings] in the upper-right corner and choose ACL on the menu.

	To add a new role, tap Add Role

[image: Add new role button]
[image: Add new role]

	In the Basic Information section enter a descriptive role Name.

4. Check if the role is set as Default. If a role is set as default, it will be assigned to any admin user created
by logging in by LDAP.

	To assign resources and permissions level, do the following:

	tap Add permission in Permissions field

	set Access level of permissions to one of the following:

	
	Modify

	user can do anything in platform specified sections and/or elements

	
	View

	user can only read and display the platform specified sections and/or elements

	in Resource field select from dropdown Admin Cockpit resource that the role can specified in previous step Access

[image: Assigne resources]

	Repeat step 4 to add access for additional resources assigned to the Role

	You can simply remove permission by clicking bin [image: bin] icon in a particular row

	When it is done, tap SAVE

The role now appears in the grid, and can be assigned to new user accounts.

	ACCESS

	DESCRIPTION

	View

	
Admins can view resources and their properties, to which they are

assigned

	Modify

	
Admins can view and modify resources and their properties, to which

they are assigned, including adding, deleting and edit option

	Not listed

	
Specifies that the permission type is not granted for the object.

Admin can not view or make any changes to the resources, if they are

not assigned to him.

To learn more about Role resources please find Role resources section

Warning

Remember that many resources are located in several sections within the Open Loyalty platform.

For example

the level details and their creation is done in the “Levels” section, but in the “Customers” sections there is also the possibility of preview and editing the assigned level.

Tip

When assigning resources, please be sure to include all sections containing resources to which user should have an access. Otherwise, admins will not be able to modify or view them all.

Admins roles management

To edit a Role:

[image: Role edition mode]

	Tap the Settings icon [image: settings] in the upper-right corner and choose ACL on the menu.

	In the Roles list, find the record to be edited and click Edit icon [image: edit] in the Action column to open the role in edit mode.

	Make any necessary changes to role details. If you change resources, make sure they have been assigned correctly

You can simply remove permission by clicking bin [image: bin] icon in a particular row

To remove a Role:

You can also delete existing role from the Admin.

Warning

Default Super admin role can not be deleted

	Tap the Settings icon [image: settings] in the upper-right corner and choose ACL on the menu.

	In the Roles list, find the record to be deleted and click Remove icon [image: remove] in the Action column to delete the role

	System displays a message asked you to confirm the action. To confirm tap Yes

[image: Removing Role Action]

	When finished, tap SAVE

Warning

When removing role, please be sure to don’t delete role which is currently assigned to any user.

Otherwise, user will not be able to login to Admin Cockpit

Emails

Email templates define the layout, content, and formatting of automated messages sent from Open Loyalty.

Open Loyalty includes a set of responsive email templates that are triggered by a variety of events that take place during the operation of your Loyalty Program. You will find a variety of prepared email templates related to customer activities, admin actions, and system messages that you can customize.

[image: Email Templates]

Customizing Email templates

Open Loyalty includes a default email template for the body section of each message that is sent by the system. The template for the body content is formatted with HTML and CSS, and can be easily edited, and customized.

[image: Preview of New Points Email]

To edit an email template:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Emails on the menu.

	In the Emails list, find the record to be edited and click Edit icon [image: edit] in the Action column to open the record in edit mode

[image: Template Information]

	Make any necessary changes to the following:

	Enter new Subject of the email message which will be displayed when the recipient gets an email.

For example OpenLoyalty – new points. The Template Subject appears also in the Subject column in Emails list grid

	In Sender name field enter the name which will be displayed when the recipient opens an email in the external email system, as the reference so that your recipient knows it was you who sent the message

	In Sender email field provide an email address which will be displayed when the recipient opens an email in the external system

	Every template has predefined variables added to content in Variables field. The selection of available variables depends on the template and can not be changed

	The HTML code is used to define content of an email. In the Content box, modify the HTML as needed. Any changes of the content should be made by technical persons, who knows HTML to avoid further technical issues with templates

Note

When working in the template code, be careful not to overwrite anything that is enclosed in double braces

	If you want to edit Reward Redeemed, additional fields to be filled in appear.

	In Receiver email field provide an email address or addresses (after comma “,”) on which notification about used gift reward will be sent.

[image: Reward Redeemed template]

	When you are ready to review your work, tap ``Preview``and make adjustments to the template as needed

	When it is done, tap SAVE

To stop/restart sending emails generated with a given template:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Emails on the menu.

	In the Emails list, find the record to be disabled/enabled and click Edit icon [image: edit] in the Action column to open the record in edit mode

[image: Template Information]

	Uncheck or check the Enabled box.

	Tap SAVE.

Email templates list

	Event

	Description

	Account created

	
E-mail send when Customer

register to program using Customer Cockpit

	
Email with link to activate account (password is entered

by customer during filling out registration form)

and link to download Terms & Conditions file (.PDF)

	Account created

	
E-mail send after registering new Customer

Account using Admin Cocpit, POS Cockpit

and API

	
It contains temporary password to activate an account

and link to download Terms & Conditions file (.PDF)

	Password reset requested

	
Send when user click on Forgot password

and provide email address

	
E-mail with reset password link

	New reward

	
Send after Customer reward redemption

	
It contains coupon code and reward campaign name

	New points

	
Send after Customer earn points

	
It contains new points value and current amount of

all active points

	New level

	
Send after Customer reach next level

	
It contains information about customer new level and

new discount

	Invitation

	
Send after Customer invite his friend to

loyalty program (refer a friend)

	
It contains referrer customer name and registration

link for his friend

	Reward Redeemed

	
Send after gift reward is marked as used

	
It contains basic information of the reward and customer

who used it and address assigned to his account to which

the prize is to be sent

Open Loyalty Settings

	CONFIGURATION

	Admins

	Access Control List (ACL)

	Role Resources

	Translations

	Message Templates

	Audit log

	Stores

Open Loyalty settings

The high-level settings for the Admin management of your Loyalty Platform include five areas that can be configured to enable and customize your activity.

Contents:

	Configuration - basic settings of loyalty platforms elements including loyalty programs behaviour

	Settings

	Level downgrade settings

	Template

	Account activation method

	Marketing Automation Tool

	Push Notification Service

	Cashback limit

	Identification factors

	Webhooks

	Information

	Admins - detailed information about Open Loyalty users and their account settings

	ACL - list of roles in the Open Loyalty system

	Translations - available languages list with the possibility to edit

	Message Templates - list of events sending email, SMS and pushy messages from Open Loyalty system, their preview and disabling option

	Stores - list of stores in the Open Loyalty system

	Audit logs - informational, error and warning events list related to the Open Loyalty system

[image: Open Loyalty Settings]

Message Templates

Message templates define the layout, content, and formatting of automated messages sent from Open Loyalty.

Open Loyalty includes a set of responsive email, SMS and Push Notification templates that are triggered by a variety of events that take place during the operation of your Loyalty Program. You will find a variety of prepared templates related to customer activities, admin actions, and system messages that you can customize.

[image: Message Templates]

Customizing Message templates

Open Loyalty includes a default message template for the body section of each message that is sent by the system. The template for the body content is formatted with HTML and CSS, and can be easily edited, and customized.

[image: Preview of New Points Email]

To edit an Message template:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Message templates on the menu.

	In the Messages list, find the record to be edited and click Edit icon [image: edit] in the Action column to open the record in edit mode

[image: Template Information]

	Make any necessary changes to the following:

	In Target choose to whom the message will be send

	In Channel select what message you would like to send

	In each message is Event field. Chose after what operation the message will be send

	Enabled activates and deactivates the sending of messages

	Enter new Subject of the message which will be displayed when the recipient gets an email.

	Every event has predefined snippets added to content in Snippets field. The selection of available snippets depends on the event and can not be changed

	The HTML code is used to define content of a message. In the Content box, modify the HTML as needed. Any changes of the content should be made by technical persons, who knows HTML to avoid further technical issues with templates.

Note

When working in the template code, be careful not to overwrite anything that is enclosed in double braces

	When you are ready to review your work, tap ``Preview``and make adjustments to the template as needed

	When it is done, tap SAVE

To stop/restart sending emails generated with a given template:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Message templates on the menu.

	In the Message list, find the record to be disabled/enabled and click Edit icon [image: edit] in the Action column to open the record in edit mode

[image: Template Information]

	Uncheck or check the Enabled box.

	Tap SAVE.

Email, SMS, Push Notification templates list

	Event

	Description

	Campaign has become available

	
Message send when the new campaign

was created

	
Message with information about new campaign

	Customer registered with temporary password

	
Message send after registering new Customer

Account using Admin Cocpit, POS Cockpit

and API

	
It contains temporary password to activate an account

and link to download Terms & Conditions file (.PDF)

	Customer registered and awaits activation

	
Message send after registering new Customer

Account using Client Cockpit

	
Message with activate the account

	Earned points

	
Send after Customer earn points

	
It contains new points value and current amount of

all active points

	Email changed

	
Send after Customer change the email

in Client Cockpit

	
It contains token to change the email address

	Gained new level

	
Send after Customer reach next level

	
It contains information about customer new level and

new discount

	Issued Reward Campaign

	
Send when a customer buys campaign

for accumulated points

	
It contains rewards coupon and information

how to use it

	Customer used campaign reward

	
Send when customer will use

the campaign

	
Message with the information about used campaign

	User requested password reset

	
Send when user click on Forgot password

and provide email address

	
Message with reset password link

	Phone number changed

	
Send after Customer change the phone

number in Client Cockpit

	
It contains basic information of the reward and customer

who used it and address assigned to his account to which

the prize is to be sent

	Transaction labeled

	
Send when new transaction is added to
list

	
Message with the information about new transaction

Which events working for messages: email, Push Notification and SMS

Email - Customer registered with temporary password, Customer registered and awaits activation, Earned points, Email changed, Gained new level, Issued Reward Campaign, Password reset requested, Phone number changed, Transaction labeled

Push Notification - Campaign has become available

SMS - Customer registered with temporary password, Customer registered and awaits activation, Earned points, Email changed, Gained new level, Issued Reward Campaign, Password reset requested, Phone number changed, Transaction labeled

Role Resources

Access to the following resources can be assigned to any admin user role.

See the Resources linked page to learn more about the capabilities that are associated with.

[image: Resources list]

Note

Regardless of the permissions granted, User can edit his password and view the basic information of his account at any time

ACL

Defines access to the ACL settings section and its individual elements

	VIEW

	MODIFY

	
	Roles list preview

	All View permissions, and more:

	Roles details preview

	New role creation

	Existing roles edition

	Existing role deletion

Warning

Default Super admin role can not be deleted

Warning

When assigning resources, please be sure to don’t give an any access to the ACL section if you are limiting access for a given role.

Otherwise, admins will be able to modify their own permissions

Admins

Defines access to the Admin Admins settings section and its individual elements

	VIEW

	MODIFY

	
	Admins list preview

	All View permissions, and more:

	New User account creation*

	Existing user account edition*

Note

To enable user edition and creation, you must have at least an ACL View access (Roles field is required).

If there is no ACL access, then you can not even see roles in the drop-down list.

Warning

Remember, that granting View access for ACL section (to enable new admins account creation and edition), you give an access to the entire ACL section (in accordance with the permissions listed in the ACL table in View column)

Audit

Defines access to the Audit logs settings section and its individual elements

	VIEW & MODIFY

	
	Audit logs list preview

	filter and sorting options of audit log

	search logs from time period

Tip

Regardless of access level, user has the same options in both - View and Modify

Customers

Defines access to the Customers section and its individual menu elements

	VIEW

	
	List of customers accounts preview*

	Filter and sorting options of customers accounts list

	Referred customers list preview

	Filter and sorting options of referred customers list

	Customer profile details: Profitability, Loyalty
Profile details and Agreements sections (defualt)**

	MODIFY

	All View permissions, and more:

	Customer account creation**

	Import customers list

	Updating Customer account**

	Deactivate a Customer’s account

	Level assigned manually mechanism**

Tip

List of customers accounts preview*

Even if User has no access to the Levels section, in All customers grid information about current level will be displayed

Note

Customer account creation & edition*

	To enable full customer account edition & creation, and display all Customer profile details, you must have at least an View access to the following:

	
	Levels - to assign level and display in Profile details

	POS - to assign POS and display in Profile details

	Merchants - to assign merchant and display in Profile details

	Segments - to display segments to which customer belongs in Profile details

	Transactions - to display all customer registered transactions in Profile details

	Points transfers - to display all customer adding/spending points transfer in Profile details

	Reward Campaign - to display customer available and redeemed rewards in Profile details

If there is no access to any of this section, then you can not see options or tabs.

[image: No levels, merchants and pos access]

Warning

Remember, that granting View access for every section (to enable new admins account creation and edition or display information in profile details), you give an access to the entire menu section (in accordance with the permissions listed in the particular tables in View column)

Dashboard

Defines access to the Dashboard section and its individual elements

	VIEW & MODIFY

	
	Blocks with factors describing the current state of referral program preview

	Chart shows the number of new customer accounts within last 30 days

	Levels grid preview*

Tip

Regardless of access level, user has the same options in both - View and Modify

Note

Levels grid preview*

To enable Levels grid preview you must have at least an Levels View access.

If there is no Levels access, then you can not see the grid.

Warning

Remember, that granting View access for Levels section (to enable levels grid preview), you give an access to the entire Levels menu section (in accordance with the permissions listed in the Levels table in View column)

Earning rules

Defines access to the Earning rules section and its individual menu elements

	VIEW

	MODIFY

	
	Earning rules list preview

	Sorting options of earning rules list

	Earning rules details preview*

	All View permissions, and more:

	Earning rules creation**

	Updating earning rules**

	Activate / Deactivate earning rule

Tip

Earning rules details preview*

Even if User has no access to the Levels, Segments and POS sections, in Earning rules details preview information about assigne target and POS will be visible

Note

Earning rule creation & edition**

To enable earning rule edition and creation, you must have at least an Levels and/or Segments View access (Target section is required).

If there is no Levels or Segment access, then you can see Target but without possibility to change it

To allow assign POS(es) to which rule will be applied, you should also give at least an POS View access

Warning

Remember, that granting View access for every section (to enable earning rule creation and edition), you give an access to the entire menu section (in accordance with the permissions listed in the particular tables in View column)

Levels

Defines access to the Levels section and its individual menu elements

	VIEW

	MODIFY

	
	Levels list preview

	Special reward details preview

	Customers assigned to level list preview*

	Download the customers list**

	All View permissions, and more:

	Creating customer level

	Updating levels data

	Activate / Deactivate level

Note

Customers assigned to level list preview*

To enable customer assigned to particular level details preview you must have at least an Customers View access.

If there is no Customers access, then you can not see the Show button to preview customers details. You can only see customers account number assigned to this level.

Note

Download the customers list**

	To download a list of customers assigned to particular level you must have at least an View access to the following:

	
	Customers - to view customers details

	Utilities - to export the list of customers

If there is no Customers access, then you can not even see the download icon.

Warning

Remember, that granting View access for Customers section (to enable customer details preview), you give an access to the entire Customers menu section (in accordance with the permissions listed in the Customers table in View column)

Merchants

Defines access to the Merchants section and its individual menu elements

	VIEW

	MODIFY**

	
	Merchants list preview*

	Filter and sorting options of merchant list

	All View permissions, and more:

	Creating merchant account**

	Updating merchant account**

	Activate/Deactivate Merchant account**

	Remove merchant account**

Tip

Merchants list preview*

Even if User has no access to the POS sections, in All merchants grid information about assigne POS will be visible

Note

Merchant Modify access**

To enable all Modify access permissions you must have POS Modify access.

If there is no or only view POS access, then you have only Merchant View permissions.

Warning

Remember, that granting Modify access for POS section (to enable Merchant modify access), you give an access to the entire POS menu section (in accordance with the permissions listed in the POS table in Modify column)

Points transfers

Defines access to the Points transfers section and its individual menu elements

	VIEW

	MODIFY

	
	Points transfers list preview*

	Filter and sorting options of points transfers list

	Points transfers details preview

	All View permissions, and more:

	Creating Points transfer

	Import points transfers

	Canceling points transfer

Tip

Points transfers list preview*

Even if User has no access to the Customer section, in All points transfers grid information about customer affected by the transfer will be visible

POS

Defines access to the POS section and its individual menu elements

	VIEW

	MODIFY

	
	POS list preview

	POS localization details

	All View permissions, and more:

	Adding new POS

	Updating POS information

Reward Campaign

Defines access to the Reward campaigns section and its individual menu elements

	VIEW

	
	Reward campaign list preview

	Filter and sorting options of reward campaign list

	Reward campaign details preview*

	Redeemed rewards list preview**

	Redeemed rewards details preview**

	Filter and sorting options of redeemed rewards list

	Download redeemed rewards report

	Campaign categories list preview

	Filter and sorting options of Campaign categories list

Tip

Reward campaign details preview*

Even if User has no access to the Levels or Segments, in Reward campaign details preview information about assigne target will be visible

Tip

Redeemed rewards list and details preview**

Even if User has no access to the Customers, in Redeemed rewards details and grid, information about customer who redeemed particular reward will be visible

	MODIFY

	All View permissions, and more:

	Reward campaigns creation*

	Updating reward data*

	Activate / Deactivate reward campaign

	Buy reward campaign for customer**

	List of customers able to redeem reward preview***

	Mark reward as Unused/used on Redeemed rewards list

	Change reward Delivery status on Redeemed rewards list

	New campaign category creation

	Updating campaign category

	Activate / Deactivate campaign category

Note

Reward campaign creation & edition*

To enable reward campaign edition and creation, you must have at least an Levels and/or Segments View access (Target section is required).

If there is no Levels or Segment access, then you can see Target but without possibility to change it

Note

Buy reward campaign for customer**

To enable manually assignment reward for customer, you must have at least a Customers View access (E-mail or phone field is required).

In case of Percentage discount code reward type, also at least a Transactions View access is required.

If there is no Customers (and Transactions) access, then you can not provide any value to find customer and assigne reward.

Note

List of customers able to redeem reward preview***

To enable customers who could redeem reward details preview you must have at least an Customers View access.

If there is no Customers access, then you can not see the Show button to preview customers details. You can see only number of customers who could redeem reward.

Warning

Remember, that granting View access for every section (to enable creation and edition etc.), you give an access to the entire menu section (in accordance with the permissions listed in the particular tables in View column)

Segments

Defines access to the Segments section and its individual menu elements

	VIEW

	MODIFY

	
	Segments list preview

	Sorting options of segment list

	Customers assigned to segment list preview*

	Download the customers list**

	All View permissions, and more:

	Creating customer segment

	Updating segments data

	Activate / Deactivate segment

	Remove segment

Note

Customers assigned to segment list preview*

To enable customer assigned to particular segment details preview you must have at least an Customers View access.

If there is no Customers access, then you can not see the Show button to preview customers details. You can only see customers account number assigned to this segment.

Note

Download the customers list**

	To download a list of customers assigned to particular segment you must have at least an View access to the following:

	
	Customers - to view customers details

	Utilities - to export the list of customers

If there is no Customers access, then you can not even see the download icon.

Warning

Remember, that granting View access for Customers section (to enable customer details preview), you give an access to the entire Customers menu section (in accordance with the permissions listed in the Customers table in View column)

Settings

Defines access to the Message templates settings , Translations and Configuration settings sections and its individual elements

	VIEW

	MODIFY

	
	Translations list preview

	Message templates list

	All View permissions, and more:

	Create new translations

	Updating translation

	Delete non-default translations

	Updating a message template

	Message template preview

	Configuration section management

Transactions

Defines access to the Transactions section and its individual menu elements

	VIEW

	MODIFY

	
	Transactions list preview*

	Filter and sorting options of transactions list

	Transactions details preview*

	All View permissions, and more:

	Match transaction with customer**

	Transaction labels ceation

	Transaction labels edition

	Importing transactions from a file

Tip

Transactions list and it’s details preview*

Even if User has no access to the Customer section, in All transactions grid and in transaction details, informations about customer related with transaction will be visible.

Note

Match transaction with customer**

To enable manually assignment transaction to customer, you must have at least a Customers View access (E-mail or phone field is required).

If there is no Customers access, then you can not provide any value to find customer and assigne transaction.

Utilities

Enables export options

	VIEW & MODIFY

	
	download customer assigned to level list

	download customer assigned to segment list

Tip

Regardless of access level, user has the same options in both - View and Modify

Tip

To download redeemed rewards report Utilities resource is not needed - Reward Campaign View access is enough

Stores

Stores functionality gives a possibility to add many stores with different currencies, codes, names. Each store has some clients and clients realize transactions only withing each store according to the currency and store code.
After creating several stores, in the top right corner, you’ll see a drop-down list where you can select a store. Once the store is selected, all the displayed data is exclusive to that selected store.
There are 6 areas where the drop-down list is not visible: Configuration, Administrators, ACL, Transactions, Stores, My profile. In all of the above, settings will apply to all the stores.

Creating a new store

To add new store:

	Tap the Settings icon [image: settings_add] in the upper-right corner and choose Stores on the menu.

	Tap Add Store to add new store,

[image: New User Account Information]

	In the Basic Information section, fill in the following fields:

	Currency

	Code

	Name

	Active

In the Active field you can define if the store is active or inactive.

	Then tap SAVE.

Editing the store

[image: Admin User Editing]

To edit an admin account:

	Tap the Settings icon [image: settings_add] in the upper-right corner and choose Stores on the menu.

	In the Stores list, find the record to be edited and click Edit icon [image: edit_form] in the Action column to open the record in edit mode.

	Make any necessary changes to store. You can change only the store name and activity of the store.

	Then tap SAVE.

Audit log

Logs grid allows monitoring every change on the customer data. The log file is accessible only to Admin users throughout the Admin Cockpit. Logs view allows you to check the date and time that change was made, type and unique ID of change and user name and his unique ID associated with this change.

In addition, you can control logs results by filter and search option.

[image: Audit Logs]
System monitors and performs following events/operations:

	
	Create –

	Customer and all elements related to the customer: transactions, transfers.
For example: new points transfer to customer account creation

	
	Modify -

	Customer, all elements related to customer (transactions, transfers, redeemed rewards), operations that change customer data indirectly (segments and level assignment)
For example: agreements updated

	
	Read -

	Customer and all elements related to the customer: transactions, transfers, redeemed rewards
For example: view customer

	
	Delete -

	Customer, all elements related to customer (transactions, transfers, redeemed rewards), operations that change customer data indirectly (segments and level assignment)
For example: delete points transfer to customer account

Search Audit Log by date range

You can search for audit logs by a certain time period using Search from time period search box. Date ranges can be specified with static start and end dates.

The date format is as follows: “YYYY-MM-DD HH:mm” and allows to display logs that have been placed from and up to the specified date.

[image: Search box]

To find a match:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Audit log on the menu.

	Set up the starting date in From field by selecting date and time from calendar grid

	Set up the end date in To field by selecting date and time from calendar grid

	When it is done, tap Search

Search/Filter Logs

The filters in the header of each column can be used to limit the list to specific values. You can simply type the value you want to find and press Enter.

[image: Search/Filter Logs Results]

To search the list:

	In the selected column in the field under column header type the value you want to find

	to find a close match, enter the few letters/signs of what you want to find

	to find an exact match, enter the exact word/number you want to find

	You can put as many values under different columns headers as needed to describe the conditions that must be met for the search result. Search values from each column create an AND Condition rule. It means that in search results only records matching all entered values are displayed

Export Audit logs

You can export audit logs to the csv file based on the for ie. selected time period for the logs.

Archive Audit logs

You can archive audit logs to the xml file over 90 days ago. If you try to archive logs for less than 90 days, this operation will be blocked.

To archive audit logs:

	Click on the Archives icon.

	Select the date in Archive before field to which the logs will be archived

	Click on the Generate a new archive icon.

The archive audit log xml file will be visible in the “Archived files available for download:” section.

Translations

The Translations section allows defining many language versions used throughout the Open Loyalty platform in both, Client cockpit and Admin cockpit. All content elements will appear in the selected default language.

Most of the text that appears to be hard-coded on pages throughout your loyalty platform can be instantly changed to a different language by changing the default language parameter. The Default language is selected at the translation creation process but can be changed at any time in edition mode.

Moreover, during Reward campaigns and Levels creation/edition processes admin can fulfill Basic Information section in every language version listed here. For example, if we have Polish and English translations, there is a possibility to provide Basic information of Levels and Reward Campaign in this both languages.

Thanks to this, changing the default language translate the text word-for-word and references a different translation table that provides the interface text that is used in the Admin and Client cockpit. The text that can be changed includes navigational titles, labels, buttons, and links such as “List of customers” and “Account”, Reward campaigns and Levels name, description etc.

Currently, Open Loyalty is available in two languages: English and Polish.

[image: Translations Lists]

Create new translations

You can create and versions your loyalty platform in multiple languages. You can have only one default language at a time.

Tip

Before adding new translations, copy existing content in JSON and paste into new one.

It helps you to include all content elements that should be translated and keep JSON format of a file.

To add new translation:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Translations on the menu.

	To add a new translation, tap Create new translations

[image: Add new translation button]
[image: New Translations Form]

	Enter a Code (locale) in lowercase characters to identify the language. For example: de

	Enter a Name for the translations. For example: German

	Enter a sort Order number to determine the sequence in which the translation is listed on a Translations list

	To set translation as a main language within the platform, mark Default checkbox

	In Content field, for each text to be edited either paste or type the translated text into the field. The translated text is marked in green.
Text in an editor must be valid JSON.

	When it is done, tap SAVE

	Repeat the process for all language version used in the Open Loyalty

Content field is available in two JSON format:

- Format JSON data, with proper indentation and line feeds
- Compact JSON data, remove all whitespaces

Field description

	Field

	Description

	Code (locale)

	
Language identifier

	Name

	
Language name

	Updated at

	
Date of last language version modification

	Default

	
Information which language is default.

Options include: Yes/No

	Actions

	
The operations that can be applied to selected translations.

Options include:

	Edit translation

	Remove translation

Note – there is not possible to remove default language version

Updating translation:

You can edit all data provided during translation creation process (except Code locale), including change the default language to another. You can update translation data by selecting its record from Translations list.

[image: Translation Editing mode]

To edit a translation:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Translations on the menu.

	In the Translations list, find the record to be edited and click Edit icon [image: edit] in the Action column to open the record in edit mode

	Make any necessary changes to the translated text

	When it is done, tap SAVE

Note

Date of last translation modification will be displayed in the Translations list grid in the Updated at column

To change the default language:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Translations on the menu.

	In the Translations list, find the language to be set as default and click Edit icon [image: edit] in the Action column to open the record in edit mode

	Mark Default checkbox

	When it is done, tap SAVE

Note

Date of last translation modification and selected as default will be displayed in the Translations list grid.

Admins

When your store is first set up, you receive a set of login credentials for the Administrator role that has full permissions. If there are others on your team or service providers who need access, you can create a separate user account for each from this section.

To limit the sections or elements that admin users can access when they log in, you must first create a role with limited permissions and access only to the necessary resources.
See ACL section to learn more about the roles.
Then, you can assign the role to a specific user account.

Note

Admin users, who are assigned to a restricted role, can see and/or change data only for resources that are associated with the role

Admins list include both active and inactive Admin user’s – inactive are grayed-out.
You can also see their status in Active column.
Additionally, Admins list grid provides basic information about admins – name, surname, email address and authenticate method.

[image: All Admins]

New admin user creation

To add new admin:

	Tap the Settings icon [image: settings_add] in the upper-right corner and choose Admins on the menu.

	To add new admin, tap Add

[image: New Admin Account Information]

	In the Create admin section, complete the following information:

	Name

	Surname

	Phone

	E-mail

This email address must be different from the one that is associated with your original Admin account

	Assign one of the existing Roles to the user account

	Then you have to decide which of the following user authentication method to choose:

	To authenticate user via an API key, do the following:

	Mark checkbox External

	Enter an API key, received from Open Loyalty provider

	To authenticate user via Password, do the following:

	Leave External checkbox blank

	Assign a Password to the account

	Set Active field to “Active”

	To receive push notifications, select the Notifications enabled checkbox

	When it is done, tap SAVE

Note

In case of API key authentication, you will authenticate the user and store that authentication in the session, so User will be automatically logged in for every subsequent request

Admin user edition

[image: Admin User Editing]

To edit an admin account:

	Tap the Settings icon [image: settings_add] in the upper-right corner and choose Admins on the menu.

	In the Admins list, find the record to be edited and click Edit icon [image: edit_form] in the Action column to open the record in edit mode.

	Make any necessary changes to user account information. If you change password/API key or role, make sure to inform user about changes

	When it is done, tap SAVE

Locked admins

Any user account, that is currently inactive, appears in the Admins list as grayed-out. An account can be unlocked (set to active) by other Admin users.

To lock/unlock an admin account:

	Tap the Settings icon [image: settings_add] in the upper-right corner and choose Admins on the menu.

	In the Admins list, find the record to be edited and click Edit icon [image: lock_form] in the Action column to open the record in edit mode.

	Set Active field to one of the following

	
	Active

	to unlock admin account. User can log in and have access to the Open Loyalty platform

	
	Inactive

	to lock an admin account. User will not be able to log in and have access to the Open Loyalty platform

Tip

Admin users can not be deleted from Open Loyalty platform.

To prevent any user from access to the platform, set the Active field as Inactive

Account activation method

In order to use Open Loyalty Client cockpit, your customers must first activate their customer account. In Account activation section you set the method how their accounts will be activated – by clicking link in welcome email or by code received via SMS.

[image: Preferred Communication Method]

To set up account activation method:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Configuration on the menu.

	Scroll down to Account activation section

	Set the Preferred communication method field to one of the following:

	
	email

	an account will be activated after clicking on the activation link sent to the email address. WARNING: remember to check if activation email message is enabled in Message Templates settings!

	
	SMS

	an account will be activated after entering a verification code sent to the phone number. The Verification PIN is valid for 30 minutes. WARNING: remember to check if activation SMS message is enabled in Message Templates settings!

	When you are done, tap SAVE

Cashback limit

The cashback limit allows you to define the number of units of currency that customer can convert through cashback each day.

[image: Cashback limit]

Customer earning and spending statuses

The Customer statuses section allows to specify to which customers with particular status, points transfer can be handled. Specify the customer statuses which determines adding and subtracting loyalty points.

[image: Customer Statuses]

To assigned a status:

	In the upper-right corner, tap the Settings icon [image: settings] . Then on the menu, choose Configuration.

	Scroll down to Customer earning and spending statuses section

	Set the Customer earning statuses field to one of the following:

	
	New

	Customer creates an account in your Loyalty Program but didn’t activate it. A customer is displaying in Customer grid from the Admin cockpit as a grayed-out. To learn more about account activation, see Account Activation

	
	Active

	Customer creates and activates an account in your Loyalty Program. Customer is displaying in Customer grid from the Admin cockpit.

	
	Blocked

	Customer is temporary inactive

	
	Deleted

	Customer has been removed

	Set the Customer spending statuses field to one of the following:

	
	New

	Customer creates an account in your Loyalty Program but didn’t activate it. Customer is displaying in Customer grid from the Admin cockpit as a grayed-out. To learn more about account activation, see Account Activation

	
	Active

	Customer creates and activates an account in your Loyalty Program. Customer is displaying in Customer grid from the Admin cockpit.

	
	Blocked

	Customer is temporary inactive

	
	Deleted

	Customer has been removed

	When complete, tap SAVE

Note

If the Customer earning statuses and spending statuses fields remain blank, i.e. no status will be assigned, loyalty points will not be charged to any Customer and any customer will be able to spend loyalty points

Identification factors

The identification factors determines the priority of factors used to match particular transaction with particular customer.

Otherwise, these information are used to assign your loyalty program participant with transaction they making and transmitting relevant transaction data to Open Loyalty for completing or validating redemption-related transactions or re-wards, calculating associated rewards or identifying transaction matches.

[image: Identification factors]

To set up identification factors:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Configuration on the menu.

	Scroll down to Matching transaction with customer section. Fields in this section are used to prioritize which of factors will be taken first to calculate transaction to customer assignment.

[image: Matching Factors with Priority]

	The Priority field determines the order in which the calculation will be handled. Enter a number to determine the Priority of this factor in relation to other factors that might be active at the same time (number 1 has the highest priority).

Note

For example

If there are three factors, with a priority of one, two, and three, the one with the highest priority (number one) is calculated before the others.

If there will be no clear result, factor with the second highest priority is verified etc.

	Set the Field to one of the following:

	
	email

	when matching transaction with the Customer email will be used (e.g. email provided in Loyalty Program and eCommerce must be the same)

	
	loyalty card number

	when matching transaction with the Customer loyalty card number will be used (e.g. Loyalty Card Number must be added to eCommerce account)

	
	phone

	when matching transaction with the Customer phone number will be used (e.g. phone number must be provided during account in Loyalty Program creation)

	You can simply remove factor rule by clicking bin [image: bin] icon in a particular row

	When it is done, tap SAVE

CONFIGURATION

	Settings

	Level downgrade settings

	Template

	Account activation method

	Marketing Automation Tool

	Push Notification Service

	Cashback limit

	Identification factors

	Webhooks

	Information

Information

In this window, we can check our OpenLoyalty version

[image: Information]

Level downgrade settings

Section appears only when Levels will be calculated with points option is chosen and allows to specify if and when customer level should be recalculated.

Here you also determine whether level recalculation should be combined with a customer points reset and define when and which points should be expired

To configure level downgrade options:

	In the upper-right corner, tap the Settings icon [image: settings] . Then on the menu, choose Configuration.

	Scroll down to Level downgrade settings section

	Set the Mode option to one of the following:

	None

	Automatic

	Every x number of days

[image: Mode options]

	Type

	Description

	None

	
Customer level doesn’t decrease and his accumulated points are not reset

No additional settings to configure here

	Automatic

	
Default Open Loyalty logic.

The only scenarios when customer can return to previous level is when

transaction (order), which caused this promotion, will be returned

or his level will be changed manually by Admin.

His accumulated points are not reset – Loyalty points pool based on

Points transfers.

No additional settings to configure here

	Every x number of days

	
Customer level will be recalculated every provided number of days based

on accumulated points counting from registration date/last downgrade date

or last level change.

If at the end of specified period

(registration date/last downgrade date/last level change + number of days

every which customer level is recalculated) customer won’t reach enough

points to stay at the same level, a customer will be relegated to level

which his points determine

	To set up level expiration after selected time period choose Every x number of days and do the following:

	In Downgrade every field define after how many days since registration date or last downgrade date (in next period) level will be recalculated. For example, provide 365 to recalculate level every year

	
	In Downgrade based on field choose which points should be used to level recalculation after defined X number of days

	
	Active points

	Earned points within last X days

	Earned points since last level change

[image: Level downgrade points pool options]

	Reset points checkbox appears only when Active points are selected. When you mark it, Open Loyalty resets all Active and Locked points and move it to Expired points pool after specified Downgrade every number of days.

[image: Reset points checkbox]
When complete, tap SAVE

Note

	If you leave checkbox blank, Active points will not be reset and will pass to next period.

	The amount of Active points will be changing by Customer activity within Loyalty program – spending points for reward campaign, earning points for transaction, newsletter subscription, Admin adding/spending points transfer etc.

Warning

	A customer level is recalculated and changing, before his points are reset.

	Points are reset after specified time period, counting from registration date, without customer level change.

Example of customer level downgrade based on earned points within last X days

Your customer points credentials to level promotion:

	Level 0 - if a customer has no points

	Level 1 – if a customer has 10 Total points earned since last level recalculation

	Level 2 – if a customer has 30 Total points earned since last level recalculation

	Level 3 – if a customer has 100 Total points earned since last level recalculation

You decided to recalculate level every year (365 days) since the customer registration date and to use for these Total points earned since last level recalculation, which will be reset at the end of the year (after level recalculation).

Customer made a two transactions and got 10 points and 20 points.

Customer got 10 points, and then customer leveled up to 1st level. Customer got another 20 points, and then customer leveled up to 2nd level.

If at the end of year a customer:

	has only 5 Total points earned since last level recalculation, he will be downgraded to the Level 0, and all his Total points earned since last level recalculation are reset

	has 10 Total points earned since last level recalculation, he will be downgraded to the Level 1, and all his Total points earned since last level recalculation are reset

	has 30 Total points earned since last level recalculation, he will stay in the same Level 2, and all his Total points earned since last level recalculation are reset

Marketing Automation Tool

To create effective email marketing and easy determine which of your products and services will suit to individual customer who registered to your Loyalty Program or just left their email address (newsletter subscription) you can integrate Open Loyalty Platform with SALESmanago.

SALESmanago is the 1st in Poland and 6th in the world* a comprehensive, next-generation platform for marketing automation. SALESmanago identifies people entering your website, analyze their online behavior and transaction. Based on this information create completed and individual customer behavioral profile. This information is processed by the Machine Learning & AI algorithms to provide fully personalized offers.

Note

To integrate Open Loyalty platform with SALESmanago tool firstly, you have to create an account in SALESmanago.

The data from your account will be needed to set up integration

[image: Marketing Automation Tool integration]

To set up integration with SALESmanago:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Configuration on the menu.

	Scroll down to Marketing Automation Tool section

	To integrate with SALESmanago in Choose integration field select SalesManago from the dropdown list. By default, field is set as Disabled

	Additional fields to complete will appear.

[image: SalesManago settings]

	To find information to fill them, open your SALESmanago account and choose: Settings -> Integration -> API Access. Then do the following:

	In API URL field provide your SALESmanago Endpoint

	In API secret field provide your SALESmanago ApiSecret string

	In API key field provide your SALESmanago MicoSite Key- a random string used for authentication

	In Customer ID provide your SALESmanago Client ID

	In Email field enter the email address of the default owner of acquired contacts in SALESmanago

	When it is done, tap SAVE

Push Notification Service

A push notification is a message that pops up on a mobile devices and websites. For better communication and to increase engagement for your loyalty program participants using mobile app you can integrate Open Loyalty platform with PUSHY.ME

Pushy is push notification gateway, which can be used to send pursh notification to each user that install app version or visits your website and registers for push notifications. A unique device token token is assign to each customer to identify him and send personalized notification.

Warning

Customer, within first website visit, need to accept notification receiving. Then unique device token is assigned.

Token assignement will fail if the user declines the Web Push permission dialog. In that case notification will not be sent.

You need to pass these device tokens to OpenLoyalty via /api/customer/{customer}/pushy-token endpoint.

[image: Push Notification Service]
Currently, Open Loyalty supports one notification about new reward campaign available for customer

Text of displaying notification is provided by you during reward campaign creation. More information about reward campaigns you will find here

Note

To integrate Open Loyalty platform with Pushy gateway firstly, you have to create an account in Pushy.

The data from your account will be needed to set up integration (API authentication section)

To set up integration with Pushy:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Configuration on the menu.

	Scroll down to Push Notification Service section

	To integrate with Pushy in Pushy API secret key field provide your Pushy ApiSecret string (API authentication section from your Pushy account)

	When it is done, tap SAVE

Warning

To display push notification, only API key is not enough

You have to put some code into your app or/and website application codebase. Documentation on how to do this can be found on the official pushy website https://pushy.me/docs/web-push

Below, you will find example code that can be used to test notifications.

<!DOCTYPE html>
<html lang="pl" dir="ltr">
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 Hello!
 <script src="https://sdk.pushy.me/web/1.0.2/pushy-sdk.js"></script>
 <script>
 // Register device for push notifications
 Pushy.register({ appId: '%APP-ID%' }).then(function (deviceToken) {
 // Print device token to console
 console.log('Pushy device token: ' + deviceToken);

 // Send the token to your backend server via an HTTP GET request
 // $.post('%your-api%/api/customer/{customer}/pushy-token/', { 'customer': { 'pushyToken': deviceToken; }});

 // Succeeded, optionally do something to alert the user
 }).catch(function (err) {
 // Handle registration errors
 console.error(err);
 });
 </script>
 </body>
 </html>

Tip

You can find more information about PUSHY and push notification mechanism on the official pushy website: ``https://pushy.me/docs/web-push``

Settings

The Configuration section determines loyalty program and points details, customer earning and spending statuses, account activation, identification factors of a matching transaction with a customer and other settings that are used throughout the Open Loyalty system.

[image: Open Loyalty Settings]

To configure Open Loyalty:

Tap the Settings icon [image: settings] in the upper-right corner and choose Configuration on the menu.

In the Settings section, do the following:

	Select your Timezone from the list. Time zone is used for date time calculation

	Enter the Program name that you want to use in all communications

	If applicable, enter the URLs to the following:

	
	Program URL

	URL to a page with Loyalty Program description

	
	Conditions URL

	URL to page with Loyalty Program Terms & Conditions description

	
	FAQ URL

	URL to page with Loyalty Program FAQ page

	If applicable, in Conditions File (PDF) field you can upload Loyalty Program Terms & Conditions document in .pdf. After uploading and saving settings a link where a file is available appears.

[image: Conditions file uploaded]

Note

The document will be attached as a link in the Welcome system e-mails footer. For more information please see Message Template Settings

	In Points singular and Points plural, type a unit label of scoring in singular and plural, that you want to appear.

For example Point, Points

	Set Help e-mail, where a customer can write to find help and support for your Loyalty Program

	In Expire points method field define customers gathered Active points expiration time boundaries to one of following:

	
	After X days

	Points will expire, after a provided in Points will expire after field number of days, from the date of adding Points transfer

	
	All time active

	Points accumulated by the participants of your loyalty program don’t expire

	
	At the end of the month

	Points accumulated by the participant will expire at the end of the month when he got it i.e. points earned on January 22nd will expire at midnight on February 1st

	
	At the end of the X-th year

	Points will expire, after a provided in Points will expire at the of the current year +X field number of years.
Points accumulated by the participant will expire at the end of the given years(0+) when he got it. For example for given number 1 year points earned in 2018 will expire at midnight on January 1st, 2020

	
	At the end of the year

	Points accumulated by the participant will expire at the end of the year when he got it i.e. points earned in 2018 will expire at midnight on January 1st, 2019

[image: Expire points method]

	Mark the Points are never locked checkbox if you want to assign points to Active points pool and recalculate customer level instantly when his transaction will be registered in Open Loyalty

	Points will be locked for field is available and required only when Points are never locked is unselected.

Points will be locked for a provided number of days from the date of transaction registration. After passing selected locked time points automatically will get active and customer level will be recalculated

[image: Locked points options]

Note

Date until points will be locked and amount of locked points is displaying in Customer profile details from the Admin and for customers via Client Cockpit

	If you marked Returns checkbox, then after Return process completed amount of points earned for a returned transaction will be subtracted

	If you want to get a webhook notification about the customer earned points expiration you can define in Days before expiring points to notify user field number of days when notification will be sent.

For proper operation, it is necessary to activate the webhook and provide the URL address to which the information will be sent (more in Webhook section)

[image: Webhook notification option – points expiration]

Tip

For example
when you enter 10, it means that every day Open Loyalty will be checking if there is any customer who has points which will expire in 10 days.

If yes webhook event will be sent (on the URL address provided by you in Webhooks section) with information about a customer, a sum of his points which will expire in 10 days and points expiration date

	If you want to get a webhook notification about the customer coupon expiration you can define in Days before expiring coupons to notify user field number of days when notification will be sent.

For proper operation, it is necessary to activate the webhook and provide the URL address to which the information will be sent (more in Webhook section)

[image: Webhook notification option – coupons expiration]

Tip

For example
when you enter 10, it means that every day Open Loyalty will be checking if there is any coupon which will expire in 10 days.

If yes webhook event will be sent (on the URL address provided by you in Webhooks section) with information about: customer, coupon code which will expire in 10 days, expiration date and coupon status (status is calculated based on days inactive and days valid defined during reward campaign creation).

	If you want to get a webhook notification about the customer level which he will receive after the recalculation (at the current state of points) you can define in Days before level recalculation to notify user field number of days when notification will be sent.

For proper operation, it is necessary to activate the webhook and provide the URL address to which the information will be sent (more in Webhook section)

[image: Webhook notification option – level recalculation]

Tip

For example
when you enter 10, it means that every day Open Loyalty will be checking if there is any customer which level will be recalculated in 10 days.

If yes webhook event will be sent (on the URL address provided by you in Webhooks section) with information about: customer, current level which will be recalculated in 10 days and new level, which he will receive after the recalculation if his loyalty points balance doesn’t change

	Set the Levels will be calculated with a field to one of the following:

	
	Points

	current level assignment will be calculated on the basis of the sum of points earned from transactions (with use of earning rules)

	
	Transactions

	current level assignment will be calculated on the basis of the summary value of all transactions

When Points is selected additional section appears below. Please see Level downgrade settings to learn how to configure reset points after a selected time period and level expiration

	When Delivery costs checkbox is selected then delivery cost will not be included in order value used for earned points calculation

	Excluded SKUs of delivery cost field is available and required only when Delivery costs checkbox is selected.

SKU’s provided in this field will be excluded from the calculation of earned points

	In the SKUs excluded from levels enter SKUs that will not be included in order value used for earned points calculation

	When it is done, tap SAVE

Template

Template management determines the logo, as well as the other content elements e.g. fonts, headers, colors, that are used for all pages within Open Loyalty.

[image: Template]
The content is formatted with CSS, and can be easily edited and customizes by adding variables and another content element. You can make a color theme on the frontend using your primary color (Accent color).

To customize your template:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Configuration on the menu.

	Scroll down to Template section and do the following:

	In Accent color, define your primary color indicator. Accent color is the color displayed most frequently across your Loyalty Program screens and components. Only Hexadecimal color values are supported.

	In the CSS template box, enter the CSS code as needed. The content consists of a combination of CSS directives, variables, and text

[image: Content management]

One of the first things you’ll want to do is to change the logo in the header above the menu. Your logo can be saved as either a PNG, JPG, or JPEG file type, and uploaded from the Admin of your Open Loyalty.

The default Open Loyalty logo in the sample data is a PNG file. During upload, Logo and Small logo images will be automatically resized to applicable versions.

In addition, you can also add an oversized banner image, called Hero image, that will be placed on a login page. Hero image is the first visual element a customer’s encounters on your site.

[image: Logo in Header Menu]

Note

Images sizing and formats:

	The minimum and maximum image width is between 200–2560 pixels

	The minimum and maximum image height is between 200–1440 pixels

	The size of any one image must not exceed 2 MB

	Supported image formats: JPEG, JPG, PNG

To upload your logo:

	In the same Template section tap Upload on selected fields to do the following:

	In Logo field, to import logo image that will be displayed on desktop version in Admin cockpit. Then choose the file from your computer- In Big logo field, to import logo image that will be displayed on desktop version in Client Cockpit. Then choose the file from your computer

	In Small logo field, to import logo image that will be displayed on mobile version in Client Cockpit. Then choose the file from your computer

	In Hero image field, to import an image that will be displayed as a banner on login page in Client Cockpit

	You can simply remove uploaded logo by taping Remove

[image: Logo Updating]

	When it is done, tap SAVE

	Field

	Description

	Logo

	
Main logo image in the Admin cockpit placed in the header above the menu.

Image is displayed on desktop version of application.

	Big logo

	
Image is displayed on desktop version of application in Client Cockpit, in the upper left

corner after login.

Big logo image in the Client cockpit placed above login credentials section on a login page

is displayed on mobile, tablet and desktop versions.

	Small logo

	
Small image is displayed on mobile or tablet version of application in Client Cockpit.

Image is also displayed in upper left corner of the Client Cockpit after login.

It can be also used as an icon of the application on the mobile device.

	Hero image

	
Large web banner image placed on a Client Cockpit login page in the front.

Hero image is the first visual element a customer’s encounters on the site

and displayed on mobile and desktop versions.

Webhooks

Webhooks is a mechanism allowing to send HTTP requests to the URL configured by Admin, triggered by some event, such as customer registration, transaction created, customer data edit etc. There is no need to be a request initiated on your end, data is sent whenever there’s new data available.

To setup a webhook all you have to do is register a URL with the company proving the service you’re requesting data from. That URL will accept data and can activate a workflow to turn the data into something useful.

[image: Webhooks Enable Option]

To enable Webhook:

	Tap the Settings icon [image: settings] in the upper-right corner and choose Configuration on the menu.

	Scroll down to Webhooks section, and to enable mechanism do the following:

	In Webhooks field mark Enable webhooks checkbox

	Enter configured URL address on which request will be sent

	In Request header name as an additional security measure for webhooks batch provide a custom header that batches can be securely sent to your webhook endpoint(s).
This gives you the option of rejecting webhook batches if these custom headers and associated values are not included in the batch

	In Request header value enter associated with header value

	When it is done, tap SAVE

Available webhooks

onCustomerUpdate

{
 "type": "customer.updated",
 "data": {
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff"
 }
}

onCustomerRegistered

{
 "type": "customer.registered",
 "data": {
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff",
 "data": {
 "firstName": "Jon",
 "lastName": "Doe",
 "gender": "not_disclosed",
 "email": "jdoe@example.com",
 "phone": 123456789,
 "levelAchievementDate": "2019-08-09T14:08:28+02:00",
 "createdAt": 1563363348,
 "address": {
 "street": "Streets",
 "address1": "12",
 "address2": "3",
 "postal": "41-222",
 "city": "Glasgow",
 "province": "Glasgow",
 "country": "GB"
 },
 "company": {
 "name": "Hydropol",
 "nip": "123"
 },
 "loyaltyCardNumber": "444555666",
 "labels": [
 {
 "key": "labels_key",
 "value": "5"
 }
],
 "agreement1": true,
 "agreement2": false,
 "agreement3": false,
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e50000",
 "posId": "00000000-0000-474c-1111-b0dd880c07e3",
 "sellerId": "00000000-0000-474c-b092-b0dd880c07e4"
 }
 }
}

onCustomerDeactivated

{
 "type": "customer.deactivated",
 "data": {
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff"
 }
}

onCustomerLevelChangedAutomatically

{
 "type": "customer.level_changed_automatically",
 "data": {
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff",
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e51111",
 "levelName": "level1",
 "levelMove": "up",
 "levelAchievementDate": "2019-08-09T14:08:28+02:00",
 }
}

onCustomerLevelChanged

{
 "type": "customer.level_changed",
 "data": {
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff",
 "levelId": "e82c96cf-32a3-43bd-9034-4df343e50000",
 "levelName": "level0",
 "levelAchievementDate": "2019-08-09T14:08:28+02:00",
 }
}

onTransactionRegistered

{
 "type": "transaction.registered",
 "data": {
 "transactionId": "cb4cc2f7-d897-4fe0-b5a6-9b67a91c0729",
 "transactionData": {
 "documentType": "sell",
 "documentNumber": "80",
 "purchasePlace": null,
 "purchaseDate": "2019-08-09T14:08:28+02:00"
 },
 "customerData": {
 "name": "Jon Doe",
 "email": "jdoe@example.com",
 "phone": null,
 "loyaltyCardNumber": null,
 "nip": "123",
 "address": {
 "street": "Bridges",
 "address1": "12",
 "address2": “3”,
 "postal": "41-222",
 "city": "New york",
 "province": "NY",
 "country": "EN"
 }
 },
 "items": [
 {
 "sku": {
 "code": "sku1230"
 },
 "name": "product_name",
 "quantity": 1,
 "grossValue": 80,
 "category": "Women",
 "maker": "Exclusive",
 "labels": []
 }
],
 "posId": null
 }
}

onTransactionAssignedToCustomer

{
 "type": "transaction.assigned_to_customer",
 "data": {
 "transactionId": "cb4cc2f7-d897-4fe0-b5a6-9b67a91c0729",
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff",
 "grossValue": 80,
 }
}

onAccountAvailablePointsAmountChanged

{
 "type": "account.available_points_amount_changed",
 "data": {
 "customerId": "32c764d9-ddd5-401f-ac13-a7fcba0982ff",
 "amount": 125,
 "amount_change": 25,
 "amount_change_type": "add”
 }
}

onCampaignBought

{
 "type": "customer.bought_campaign",
 "createdAt": "2020-09-24T14:09:13+02:00",
 "data": {
 "storeCode": "DEFAULT",
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "campaignId": "38e45c26-7c57-3962-9516-3704fa3eb776",
 "costInPoints": 1.0,
 "couponCode": "655"
 }
}

onExpiringPointsNotification

{
 "type": "account.expiring_points_notification"
 "createdAt": "2021-12-14T14:16:54+00:00",
 "data": {
 "customerId": "00000000-0000-474c-b092-b0dd880c07e1",
 "customerEmail": "jdoe@example.com",
 "customerPhone": "+123456789",
 "customerLoyaltyCardNumber": "0000",
 "customerFirstName": "Jane",
 "customerLastName": "Doe",
 "points": 100.0,
 "pointsWillExpire": "2021-11-16T22:59:59+01:00",
 "storeCode": "DEFAULT"
 }
}

Levels

In this section of the guide, you will learn how to create and use customer levels to create opportunities for customer engagement and how to set up targeted discounts and rewards based on a variety of conditions.

The more points customers receive, the higher level they’ll reach. And, the higher level of loyalty, the more rewards customers will get.

You can use levels to offer customer incentives, such as:

	assigned a fixed reward to the particular level. The higher level – the better reward

	offer limited in time special rewards for customer assigned to particular level

Levels menu

	Introduction

	All levels

	Customers assigned to level list

	Download the customers list

Customer level creation & edition

	Creating customer level

	Updating levels data

	Activate / Deactivate level

Special rewards

	Special rewards

Special Rewards

Special reward should be set if you want to give special discount for customer but only limited in time.

[image: Add Special Reward]

To assigned special rewards to level:

	Open Add/Edit Level Form as described in previous section

	Go to Special reward details section and click Add special reward

Then do the following:

	To activate the level special reward, in Active field select “Active” from the dropdown list

	Enter a Reward name as a brief description that explain purpose of the reward creation. For example, Woman’s day

	Enter discount Value for special reward. For example, value 20 means 20% discount

	Enter a Reward code to be used by customers assigned to this level authorizing to special reward Value

	In Start at and End at fields specify time boundaries when special reward will be visible and active

[image: Special Reward Details]

	Repeat the steps for all special rewards you want to assigned to this level

	When it is done, tap SAVE

	You can simply remove special reward by clicking bin icon [image: remove] in a particular box

Customer level creation & edition

	Creating customer level

	Updating levels data

	Activate / Deactivate level

Activate / Deactivate level

Any levels from the list can be activated and deactivated by Admin user.

To activate/deactivate level:

	On the Admin sidebar, tap Levels. Then, choose All levels.

You can also deactivate/activate level from Edit mode

	In the levels list, find the level to be deactivated and click Active in the Active column.

The button in the column change to Inactive and appear as a grey-out.

[image: Active Column]

Warning

When you deactivate levels, customers accounts assigned to this level will be still display level name but redeeming rewards and special rewards assigned to this level will not be possible

	To activate the level click Inactive in the Active column.

The button in the column change to Active and appears as a red.

Note

Customer can be assigned only to Active levels

Creating customer level

You can create unlimited amount of customizable customers levels for your loyalty program based on various conditions.

Depending on the Translations settings, Basic information can be provided in different language versions (listed in Translations).
Information from that section can be displayed in the client cockpit depending on a default language version chosen in the admin cockpit.

For example,

when default language is English, information is displayed in English, but when we change it to Polish as a default language, all basic information will be displayed in Polish (if provided).

[image: Add New Level]

To create a New Customer Level:

	Tap Levels on the Admin sidebar and choose Add level. You can also add a level directly from All levels list by clicking Add Level at the top of the page

[image: Add Level Options]
[image: Add Level Form]

	In the Basic Information(English) section, related to the default language version do the following:

	Enter a unique level Name to identify the customer level

	Enter a brief Description that explain the purpose of the level for internal reference

	If applicable, fill the same fields in other language versions e.g. Polish as on a screen above

	In the Basic Information section select store with which the level will be linked with.

	In Reward details section do the following:

	To activate the customer level, in Active field select “Active” from the dropdown list

	Depending on the Configuration, set Condition value as a minimum points value or minimum transaction amount needed to be achieved to be assigned to this level

	Field Min order value is currently not used so you do not have to fill it in

	In Reward name provide a brief description that explain purpose of the reward. For example, 15% off for every purchase

	In Reward value field enter a discount value for level reward. For example, value 15 means 15% discount

	Enter a Reward code to be used by customers assigned to this level authorizing to Reward value

	If you want to give special discount for Customer but only in limited time, complete the Special reward details section.

To learn how to assign a special reward to particular level, see Special rewards

	If applicable, upload a Level photo that will be displayed on a storefront

	When complete, tap SAVE

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

Deleting customer level

The levels created in OpenLoyalty are not supposed to change a lot, but if one or more of them is no longer needed,
there is a possibility to remove them.

To remove a level:

	Navigate to the levels list. On the Admin sidebar, tap Levels.

	Find the level to remove.

	In the Actions column, use [x] button to show the delete level modal.

	Confirm deletion by tapping YES.

Note

The level’s data may still be present in the database (entity is soft deleted), but will not display in the admin panel or be returned from API.
Currently there is no possibility to revert the deletion action without editing the database.

Updating levels data

You can edit all data provided during level creation process. You can update level data by selecting it’s record from All levels list.

[image: Level Edition]

To edit a level:

	Tap Levels on the Admin sidebar and choose All levels.

	In the Levels list, find the record to be edited and click Edit icon [image: edit] in the Action column to open the record in edit mode

	Make any necessary changes to the level data

	When it is done, tap SAVE

All levels

The Levels page lists all customers levels available to reach within Loyalty Program. The same list is also visible from the Dashboard.

You can easily view and modify all levels credentials such as condition value, assigned rewards and special rewards. Tab allows also to preview number of customers assigned to particular levels and see theirs detail or download in .CSV file.

[image: Customers Levels]
Use the standard controls to sort the list and apply actions (modify and download targeted customer) to selected levels.

Field description

	Field

	Description

	Name

	
Name of the Customer level, visible when information about level will be displayed

	Description

	
Level brief description

	Condition value

	
Minimum sum of earned points or sum of all transactions value needed to be
assigned to this level

	Reward name

	
Description of level reward (e.g. 5% discount)

	Reward code

	
Discount code to be used on

	Reward value

	
Discount value for this level (e.g. 5)

	Min order value

	
Currently not used. “Not set” will be shown

	Customers

	
Show customers account number assigned to this level.

After Show click, list of these customer details will be shown

	Active

	
Action to change is Level active.

Option include: Active/Inactive

	Special rewards

	
Show Special Reward data related to Level, available when additional conditions
will be met.

If Level has not defined Special Reward then “Not set” will be shown

To learn more about special rewards, see
Special rewards section

	Actions

	
The operations that can be applied to selected level record.

Options include:

	edit level data

	download list of customers (with details) assigned to this level

Download the customers list

You can download the list of customers as a CSV file.

To download the list of customers:

	Tap Levels on the Admin sidebar and choose All levels

	In the levels list, find the level you want to download customers list and click Download icon [image: download] in the Action column

After clicking, the list of customers will be downloaded in .CSV format.

Customers assigned to level list

You can simply view not only the number but also the list of customers with details assigned to particular level.

To display the list of customers:

	Tap Levels on the Admin sidebar and choose All levels

	In the levels list, find the level you want to see customers list and click Show in the Customers column.

After clicking, the list of customers will be opened, filtered according to the assigned level.

[image: List of Customers in Level VIP]
Use the standard controls to sort the list, filter and search customer by typing in the field under column header value you want to find, and apply actions to selected customers (edit and view).

Pagination controls appear if there are more customer records than fit on the page, and are used to move from one page to the next.

Levels Menu

	Introduction

	All levels

	Customers assigned to level list

	Download the customers list

Introduction

Levels are used to categorize customers based on the value of their transactions (orders) - The higher value/amount of transaction, the more points they will get and the higher level they’ll reach.

Customer is assigned to only one level at a time. Customers are placed into levels based either on their total amount of transactions or points they have earned. If customer has spent enough money or earned enough points to move up a level, their level will automatically move up and they will be informed about it via email or SMS (unless OL was configured not to send one).

Depending on the Configuration, customer can also return to previous level e.g. when order, which caused this promotion, will be returned by him or his accumulated points will be not enough to stay at the current level at the end of specified period.

More in level downgrade settings section.

Customer level can be also changed to higher or lower manually by the Admin user. If you move a customer to a level manually, they are excluded from any automatic levels upgrades or downgrades

Each level can provide fixed discounts and also have exclusive rewards that can only be claimed when a customer is on that level.

[image: Customers Levels]

To display the Levels menu:

Tap Levels on the Admin sidebar and choose All levels

Menu options:

All Levels

Lists all customers level within your loyalty program with additional information regarding conditions values, assigned rewards and possible, limited in time, special rewards

[image: Customers Levels]

Add Level

Lists all data that need to be filled out to add new customer level

[image: Add level]

Merchants

This section of the guide provides an overview of the all merchants working in yours stores and involve with Loyalty Program.

You’ll learn how to add and manage merchant data, including assigning to particular store.

Merchant menu

	Introduction

	All merchants

Merchant account Creation & Management

	Creating merchant account

	Updating merchant account

	Activate / Deactivate Merchant account

	Remove merchant account

POS cockpit

	Introduction

	POS Cockpit account

	Merchant account

Activate / Deactivate Merchant account

Any merchant account from the list can be activated and deactivated by Admin user.

To activate/deactivate merchant account:

	On the Admin sidebar, tap Merchants. Then, choose All merchants.

You can also deactivate/activate level from Edit mode

	In the merchants list, find the merchant to be deactivated and click Active in the Active column.

The button in the column changes to Inactive and appears as a grey-out.

[image: Active Column]

Warning

When you deactivate account, merchant will not be able to login to his account in POS Cockpit.

	To activate the merchant account click Inactive in the Active column.

The button in the column changes to Active and appears as a red.

Creating merchant account

You can create from Admin unlimited amount of merchants account and assigned them with particular store (POS).

Merchant account is needed to log in to POS Cockpit.

[image: Add Merchant]

To add new Merchant:

	On the Admin sidebar, tap Merchants. Then, choose Add merchant. You can also add store directly from All merchants list by clicking Add Merchants at the top of the page

[image: Add merchant Options]

	In the Merchant details section, do the following:

	Enter merchant First name and Last name

	To activate the merchant account, in Active field select “Active” from the dropdown list

	Enter merchant E-mail address, which will be used as a login credential to merchant account in POS Cockpit

	Provide merchant Phone number (in one of the acceptable format)

	Enter Password to merchant account, which will be used as a login credential to account in POS Cockpit.

Merchant will not receive password to his account automatically via email/SMS message. You have to give it to them via some other channel or in person.

	Assign POS to merchant by selecting from the dropdown list POS name

	Mark Allow to add a new transfer points checkbox to allow merchant to manage customers points transfers (add, spend, cancel, deduct points amount etc.) from the POS Cockpit

[image: Add merchant form]

	When it is done, tap SAVE

Note

Your password must be eight or more characters long, and contains at least one upper case letters, one numeric character and one special character

Remove merchant account

You can also delete merchant account from the Admin.

To delete a merchant account:

	On the Admin sidebar, tap Merchants and choose All merchants

	In the Merchants list, find the record to be edited and click Remove [image: remove] icon in the Action column to delete the merchant account

	System displays a message asked you to confirm the action. To confirm tap Yes

[image: Removing Merchant Action]

Updating merchant account

You can edit information about your merchants, including all their data provided during account creation process and password.

Obviously Merchant can also edit all listed data (including password) from his account in POS Cockpit.

[image: Merchant Account Editing]

To edit a a merchant account:

	Tap Merchants on the Admin sidebar and choose All merchants

	In the merchants list, find the record to be edited and click Edit icon [image: edit] in the Action column to open the merchant in edit mode

	Make any necessary changes to the merchant account information

	When it is done, tap SAVE

To change a password to merchant account:

	Tap Merchants on the Admin sidebar and choose All merchants

	In the merchants list, find the record to be edited and click Edit icon [image: edit] in the Action column to open the merchant in edit mode

	In Password field click Change password link. After clicking the field will be blank.

	Provide a new password in blank Password field

	When it is done, tap SAVE

Note

The same like during merchant account creation, merchant will not receive password to their account automatically via email nor SMS message.

You have to give it to them via some other channel or in person.

Merchant account

	Creating merchant account

	Updating merchant account

	Activate / Deactivate Merchant account

	Remove merchant account

Merchant account

	Introduction

	POS Cockpit account

	Merchant account

Introduction

Merchants are linked with a store and Point of Sale (POS) device. PoS device plays an important role in implementation of the Loyalty Program.

The sale can be done by webshop or stationary by retailers to customers – but in that case only through PoS devices. This chapter gives an overview of the PoS Cockpit usage.

[image: POS Cockpit Home Page]

Merchant account

Merchant through theirs account can view basic customer data and activity within Loyalty Program, and manage their own personal information.

Your till is equipped with a touchscreen displaying the Open Loyalty POS Cockpit. Touch a control element (e.g. buttons, entry fields, etc.) displayed on the screen using your finger or a blunt object. The control element is activated and the function requested is executed.

The general elements described below provide you with transaction details, loyalty program operations and allow you to enter information or select functions displayed.

Home Page

The POS Cockpit Home page provides button links to main details of loyalty activities: transactions, customers, Earning Rules and Reward Campaigns

[image: POS Cockpit Home Page]

Match transaction & customer

Allows to link transaction with Customer Account directly from the POS. Based on matching transaction with customer identification factors priority (set up in Configuration). Useful when only transactions are sent to Open Loyalty

*To remain about identification factors please see Configuration

[image: Match transaction & customer]

Register customer

Allows to register new customer directly from the POS. Useful when new customer want to register to Loyalty Program during his shopping in a store

[image: Register customer]

Find customer

Allows to find specify customer with a link to each to preview his profile details directly from the POS

[image: Find customer]

Find transaction

Allows to find specify transactions and preview its details directly from the POS with a link to each to see more information

[image: Find transaction]

Reward campaigns

Lists all available rewards with details about target, limits, cost in points and status with a link to each to see more information

[image: Reward campaigns]

Earning Rules

Lists all available rewards with description and details about type, time boundaries when rule is active and status with a link to each to see more information

[image: Earning Rules]

POS Cockpit account

Merchants have easy access to their account from their POS. Merchants can be redirected to POS cockpit as loyalty module within your POS.

[image: Sign In to POS Merchant Account]
When merchants forgot their passwords, a reset link is sent to the email address that is associated with the account.

To sign in to your merchant account:

	Click a link on the POS to open Login page

	When it is prompted, enter the Email Address that is associated with customer account, and Password. Then, tap Sign In

To reset your customer account password:

	Tap Forgot password? on the Login page

	When it is prompted, enter the Email Address that is associated with your account, and tap Recover Password

If the email address you entered matches the one that is associated with the account, you will receive a “Password reset requested” email with a link to reset your password.

	Click the Reset Password link in the email and enter your New Password. Enter it again to confirm

Warning

Your password must be eight or more characters long, and contains at least one upper case letters, one numeric character and one special character

When you receive confirmation that the password is updated, you can use the new password to log in to your account.

To sign out of the merchant account:

In the upper-right corner, tap the Logout [image: logout] icon

[image: Logout]
When merchant logout, the Sign-In page returns.

All merchants

The All merchants grid provides information about all merchants and its assigned to a POS, which transactions made by customers will be registered and count within Loyalty Program.

Moreover, list contains POS address details and additional information about each one and allows modify merchant data.

[image: Merchants]
Use the standard controls to sort the list, filter and search merchant by typing in the field under column header value you want to find, and apply actions to selected merchants (modify or remove).

Pagination controls appear if there are more merchants records than fit on the page, and are used to move from one page to the next.

Field description

	Field

	Description

	First Name

	
The first name of the merchant

	Last Name

	
The last name of the merchant

	Phone

	
The merchant phone number. Can be used as a search/filter option.

Formatting is as on follow example:

	Country code: +48/48

	Subscriber number: 123456789

	In total: +48123456789 / 123456789 / 48123456789

	Email

	
The merchant email address.

Can be used as a login to POS Cockpit or search/filter option

	POS ID

	
Unique POS ID.

Can be used in XML file to import transaction and customer

	POS name

	
Name of the store

	POS city

	
City where store is located

	Active

	
Merchant account current status. Option include: Active/Inactive

Only Active merchants account are using for login to POS Cockpit

	Actions

	
The operations that can be applied to selected merchant account.

Options include:

	Edit merchant data

	Remove merchant account

Merchants Menu

	Introduction

	All merchants

Introduction

The Merchant is linked to a store. In Open Loyalty store is called point-of-sale (POS).

Merchants menu provides an overview of all merchants and its assigned to particular POS. You can simply see number of merchants works in particular store.
Moreover, you can assign merchant to customer, who is operated by a given merchant.

[image: Merchants]

To display the Merchants menu:

Tap Merchants on the Admin sidebar and choose All merchants

Menu options:

All Merchants

Lists all Merchant within your loyalty program with additional information regarding his data and assigned POS localization

[image: Merchants]

Add Merchant

Lists all data that need to be filled out to add new Merchant

[image: Add Merchant]

Points transfers

This section of the guide walks you through the basic points transfer information.

You will learn how to add and manage transfer of loyalty points records and finally better understand all terms related to points transfer.

Points transfers menu

	Introduction

	All Points transfers

	Canceling points transfer

	Points transfer details preview

Points transfer creation

	Creating Points transfer from admin

	Import points transfers

	XML file structure

Points transfer creation

	Creating Points transfer from admin

	Import points transfers

	XML file structure

Creating Points transfer from admin

Customers usually earn and spend points within Open Loyalty system – points are added for transaction and activity based on Earning Rules and spent for Reward Campaigns selected by customer within customer cockpit.

However, you can also create customer points transfer directly from the Admin, which is useful in case of ad-hoc special situation e.g. long delivery delay, the biggest purchase among customers in year etc.

[image: Add Points Transfer]

To add points transfer manually:

	On the Admin sidebar, tap Points transfers. Then, choose All points transfers

	Tap Add transfer at the top of the page. Then do the following:

	From the dropdown list choose Transfer type:

	If you want to subtract points select Spend points

	If you want to add points select Add points

	Select customer account for which points transfer will be deal with. Enter few letters/signs of customer name/surname/phone.
System displays the list of all matching customer records.

	In Points to add/spend field enter amount of points that will be added to / subtracted from Customer Account active Points

	If needed, provide a Comment for operation as a brief description that explains purpose of the transfer e.g. information on what they were spent or why they were subtracted

[image: Select Customer to add Points Transfer]

	When it is done, tap SAVE

Import points transfers

If you have a customer list that you want to add points within your Loyalty Program, you can enter it into a Points transfer XML file and then import it in your Open Loyalty Admin.

[image: Import Points Transfers]
Importing a XML file will create a points transfer for each customer, identified by:

	ID

	email address

	loyalty card number

	phone number

Note

At least one, of the listed above value, must be provided to identify the customer and create points transfer for him.

Tip

For example,

in XML file you can provide only customer loyalty card number – if this number is unique and allow to identify him.

If not, provide e-mail or phone number for better authentication.

If all informations are provided, platform uses them to assign your loyalty program participant with points transfer based on hard-coded priorities assigned to this value. Priorities can’t be changed.

Priorities are as follows:

	Customer ID

	Customer e-mail address

	Customer Loyalty card number

	Customer phone number

If any of this four listed value will not give a result an error message occurred.

Mechanism of matching the customer with points transfer basing on priorities is the same like in Identification factors description (number 1 has the highest priority).

Note

For example,

if XML file includes customer ID and email address, customer ID is used for matching before the email address.

If there will be no clear result, email is checked, and so on.

To import a points from a file:

	Tap Points transfers on the Admin sidebar and choose All points transfers

	Click Import at the top of the page, next to Add Transfer

[image: Points Import Button]

	In the Import points transfers dialog, click Upload and then choose your customer XML file.

[image: Import Points Transfers]

	When file is selected, click IMPORT

The points transfers details of customers whose you’ve added to the XML file will appear in the All points transfers list in your Open Loyalty admin.

XML file structure

Tip

If you don’t have or don’t want to import all this data, remove all code lines/section instead leave it blank.

For example, if you don’t want to include province remove all line from the code - don’t leave it with no value as below

Remember that some of them are required, so if you remove it Import will not be possible

WRONG FORMATTING

<customerPhoneNumber> </customerPhoneNumber>
<customerPhoneNumber></customerPhoneNumber>

Example of completed Points transfer XML file structure below

<?xml version="1.0" encoding="UTF-8"?>
<pointsTransfers>
 <pointsTransfer>
 <customerId>00000000-0000-474c-b092-b0dd880c07e2</customerId>
 <customerEmail>john.doe@example.com</customerEmail>
 <customerPhoneNumber>+48888888888</customerPhoneNumber>
 <customerLoyaltyCardNumber>936592735</customerLoyaltyCardNumber>
 <points>12</points>
 <type>adding</type>
 <comment>reason of points transfer</comment>
 <validityDuration>30</validityDuration>
 </pointsTransfer>
 <pointsTransfer>
 <customerEmail>jane.doe@example.com</customerEmail>
 <customerLoyaltyCardNumber>0123456789</customerLoyaltyCardNumber>
 <points>50</points>
 <type>spending</type>
 <comment>reason of points transfer</comment>
 <validityDuration>30</validityDuration>
 </pointsTransfer>
</pointsTransfers>

All Points transfers

The Points transfers lists gives you information about value of earned and spent points by particular customer with details regarding customers and transfer process. Moreover, list contains information whether points are the result of Earning Rules (system) or they have been manually set by the Admin user (admin).

To learn more about Earning Rules, see Rules details

[image: Points Transfers List]
Use the standard controls to sort the list, filter and search transfers by typing in the field under column header value you want to find, and apply actions to selected transfers records.

Pagination controls appear if there are more transfer records than fit on the page, and are used to move from one page to the next.

Field description

Canceling points transfer

To cancel points transfer click Remove icon [image: remove] in the Action column. System will display a message asked you to confirm the action.

[image: Removing Transfer Action]
After canceling, no action to canceled transfer record will be longer available and the Remove icon [image: remove] background will change color to blue.

The same situation deals with Points transfers with “spending” type.

[image: Deleting Transfers Icons]

Points Transfers Menu

	Introduction

	All Points transfers

	Canceling points transfer

	Points transfer details preview

Introduction

The Points Transfers section lists all – system and imported, increasing and decreasing sum of loyalty points assigned to customer account points transfers that has taken place between your customers account and Open Loyalty, and provides access to more detailed information.

[image: Points Transfers]

To display the Points Transfers menu:

On the Admin sidebar, tap Points Transfers, then choose All points transfers

Points transfer details preview

To see more information related with particular point transfer click View icon [image: view] in the Action column.

System will display a popup with additional information, with comment and points expires date.

[image: Points transfer details]

Field description

	Field

	Description

	Comment

	
Show details about transfer, e.g. for what Customer gets points, for what Customer
spend points.

Field is automatically filled in with the reward campaign name when the
customer spends points for the reward using his account.

Field is automatically filled in with the earning rule name, used to
earn points by customer.

If transfer is created manually by Admin user, field is filled in with information
provided by the Admin during transfer creation.

	Expires at

	
Date when points earned by customer expire.

Number of days after points expire is set up in
Open Loyalty Configuration

POS

In this section of the guide, you’ll learn how to set up a stores – online and offline, and manage their data

POS menu

	Introduction

	All POS

	POS localization details

POS Creation & Edition

	Adding new POS

	Updating POS information

Adding new POS

You can add unlimited amount of stores where processed transaction within Loyalty Program will be recorded and counted.

[image: add POS]

To add new POS:

	Tap POS on the Admin sidebar and choose Add POS. You can also add store directly from All POS list by clicking Add POS at the top of the page

[image: Add pos Options]
[image: Add POS Basic Information Section]

	In the Basic information section, do the following:

	Enter Name of the store that will be displayed in views

	If needed, provide a brief Description of store that help identifications

	To better identification, in Identifier field select enter unique store name/code

	In Localization section, provide the following required store address detail information:

	Street name

	Building name

	Postal code

	City

	State/Province

	Country

	In the same Localization section, complete the optional fields as needed:

	Flat/Unit name

	Latitude

	Longitude

	When it is done, tap SAVE

POS Creation & Edition

	Adding new POS

	Updating POS information

Updating POS information

You can edit information regarding POS used within your Loyalty Program, including all their data provided during POS creation process.

[image: POS Editing]

To edit a POS:

	Tap POS on the Admin sidebar and choose All POS.

	In the POS list, find the store to be edited and click Edit icon [image: edit] in the Action column to open the record in edit mode

	Make any necessary changes to the POS data

	When it is done, tap SAVE

All POS

The All POS grid provides information about all stores, which transactions made by customers will be registered and count within Loyalty Program.

Moreover, list contains address details and brief description about each one and allows modify POS detail.

[image: POS]
Use the standard controls to sort the list and apply action (modify) to selected POS records.

Pagination controls appear if there are more rule records than fit on the page, and are used to move from one page to the next.

Field description

	Field

	Description

	Name

	
Name of the store

	Description

	
Brief description of the store

	Identifier

	
Unique POS name/code used for internal identification

	Localization

	
Address details of the store. Only city is visible.

More information is available after clicking Show more

	Actions

	
Open POS record in edit mode

POS Menu

	Introduction

	All POS

	POS localization details

Introduction

Customers can make transactions not only in the online store but also in offline stores. Both transactions should be counted within your Loyalty Program.

POS menu allows you to define all stores, that transaction should be included within your Loyalty Program.

[image: POS]

To display the POS menu:

Tap POS on the Admin sidebar and choose All POS

Menu options:

All POS

Lists all POS within your loyalty program with additional information regarding it’s localization

[image: POS]

Add POS

Lists all data that need to be filled out to add new POS

[image: add POS]

POS localization details

You can simply view not only the transaction summary and city were store is located but also the address details.

To display the address details:

	Tap POS on the Admin sidebar and choose All POS

	In the POS list, find the store you want to see address details and click Show more in the Localization column.

After clicking, the popup with detailed address will be shown.

[image: Localization Details Popup]

Reward campaigns

In this section of the guide you will be familiar with creating and managing rewards available within your Loyalty Program.

You will learn what type of rewards can be choose, how to assigned reward to specify customers, define activity time and manage reward details.

You will also learn how to verify which rewards have been already redeemed and by which customers.

Reward campaigns menu

	Introduction

	All Reward campaigns

	Buy reward campaign for customer

	Redeemed rewards

	All campaign categories

Reward campaigns creation

You can create unlimited amount customizable customers segments for your loyalty program based on various criteria’s.

	Reward campaigns types

	Conditions of reward availability for customers

	Gift fulfillment tracking process

Reward campaigns

	Cashback

	Custom campaign

	Discount code

	Free delivery

	Gift

	Invitation for the event

	Percentage discount code

	Value code

Reward campaigns modification

	Updating reward data

	Activate / Deactivate reward campaign

Conditions of reward availability for customers:

	Campaign must be Active

	Campaign must be Visible (if visibility is limited in time)

	Customer is assigned to Segment/Level which are selected in Reward Campaign configuration

	There are available coupon codes (non used) for the campaign or campaign is not limited with single coupon code

	If there is option to limit coupon per campaign then reward is available when usage count is below limit

	If there is option to limit coupon per user then reward is available when usage count is be-low limit

Cashback

During purchase customer can exchange earned points and get value discount to reduce order amount. Discount is calculated based on Point value. Each point will be exchanged for provided value in Point value field (regarding current currency)

For example

	local currency is EUR

	point value is equal 2 (i.e. 1 point = 2 EUR)

	customer has 50 points

Customer total amount of transaction is 100 EUR. Based on point value, if he exchanges all his points (50), he can get order for free.

If he exchanges part of his points e.g. 20, he will receive 40 EUR discount, and will have to pay 60 EUR for his order (instead of 100 EUR)

Note

If more than one Cashback campaign is available and active only ONE of them will be used - the one with the best conversion rate at given time (better Point value)

To create Cashback reward:

	On the Admin sidebar, tap Reward campaigns. Then choose Add reward campaign. You can also add new reward directly from All reward campaigns list by clicking Add reward campaign at the top of the page

[image: Add Reward Options]

	In Campaign type section select a Cashback reward type from a dropdown list (by default Discount code is displayed)

[image: Cashback type]

Note

Depending on the selected Campaign type, Basic information section and the next one, Campaign details, will display different fields to be filled in.

Different fields are required for Cashback, Custom reward and Percentage discount code than for other types, that is discount code, free delivery etc.

[image: Cashback Basic Information]

	When you choose Cashback, in the Basic information section related to the default language version do the following

	Enter unique reward Name

	If needed, provide a Short description of the reward campaign detail using rich media format

	If needed, in Brand name field provide the name of the brand, that will be display in Client cockpit

	If needed, provide a Brand description of the reward campaign using rich media format

	If applicable, fulfill the same fields in other language version e.g. polish as on a screen above

[image: Cashback Campaign Details]

	In the Campaign details section do the following

	To make reward available for customer, in Active field select “Active” from the dropdown list

	If needed, enter URL to the content page in More information link field, that explains your reward campaign or to external web with reward details

	If applicable, in Push notification text provide a text message that will be displayed as a push notification for Customer, when reward become available for them

	In Point value field, enter the monetary value of the points to define the number of points that can be applied as a refund towards the amount of order

	If applicable, In Reward value field provide a monetary value of reward

	If needed, enter Tax rate that applies to the reward and monetary value of tax for reward in Tax value

	If applicable, mark Featured checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

	If applicable, mark Public checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

Note

If Push notification text is not provided, notification about new reward availability will not be sent.

It does not change the fact that the reward will be available for customer and will be displayed in Available rewards section in Admin and Client cockpit.

	In the same Campaign details section, if applicable, create Label(s) you want refer to reward. Labels are intended to be used to specify identifying attributes of reward campaign.

Labels can be used only when you use API to organize subsets of rewards and make filtering/searching rewards campaign easier. Through API you will be able to get list of all rewards with specified key or key and value.

	To create a Label, tap Add Label and do the following:

	Type label Key, which is a label name

	Type label Value

For example: Key – Event, Value – Birthday.

	Repeat the process for all labels you want to used in your Loyalty Program

[image: Reward Campaign Labels]

Note

Filtering/Searching via API allows you to get list of all rewards related to events or (more specified) related to birthday event.

Note

Labels can be added to reward campaign during reward creation and subsequently added and modified at any time

	In the same Campaign details section, in Categories field, select campaign category or categories to be assigned to this reward campaign. You can assign more than one campaign category.

[image: Campaign category]

	Brand info section allows to upload an image of the reward brand, that will be displayed in Client cockpit

[image: Brand info]

	A reward can be extended to members of a specific customer group. In the Target section identify the customer group that qualifies to receive the reward

	In Target type field, select from dropdown list Level or Segment to specify whether the reward will be available for customers assigned to particular level or segment

	Depending on selected Target type, field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Target]

	Activity section defines time boundaries when reward can be used by customers. To make the reward available for a limited period of time, complete the From and To dates in Activity section:

	In Active from field set the first date the reward is available. You can either enter the date or select it from the calendar

	In Active to field set the last date the reward is available. You can either enter the date or select it from the calendar

	If you want the reward to be active all the time,please mark All time active checkbox. When you choose that option Active from and Active to fields will not be available.

[image: Activity]

Note

Active to and Active from fields are available only when reward activity (availability) is limited

Note

Status of the Reward campaign (Active/Inactive) has higher priority than time boundaries from Active section.

Even if time boundaries from Activity section are valid, changing Status to Inactive means that reward will not be available to customers.

	When it is done, tap SAVE

Warning

Cashback is visible for a customer in Available rewards section in Client Cockpit but without possibility to redeem it

Custom campaign

Receiving reward by customer may be linked with geolocation or QR code earning rule. Rule to which reward will be assigned is specified in Connect type field.

If customer redeemed reward, and conditions of linked rule will be met, additional points will be assigned to his account.

For example

	during reward creation, geolocation earning rule has been assigned, for which (when it is fulfilled) customer can get 10 points.

When during reward redeeming, customer is in specified in geolocation rule location (rule radius, latitude, longitude conditions are met), except reward that he redeemed additional 10 points goes to his Active points pool. If rule conditions are not fulfilled, customer receives only reward (without additional points).

	during reward creation, qr code earning rule has been assigned, for which (when it is fulfilled) customer can get 15 points.

When during reward redeeming, customer will scan specified in qr code rule code (e.g. redeeming reward is done by scanning code), except reward that he redeemed additional 15 points goes to his Active points pool. If rule conditions are not fulfilled, customer receives only reward (without additional points).

To create Custom campaign reward:

	Tap Reward campaigns on the Admin sidebar and choose Add reward campaign. You can also add new reward directly from All reward campaigns list by clicking Add reward campaign at the top of the page

[image: Add Reward Options]

	In the Campaign type section select a Custom campaign reward type from a dropdown list (Discount code is displayed by default)

[image: Custom reward type]

Note

Depending on the selected Campaign type, Basic information section and the next one, Campaign details, will display different fields to filled in.

Different fields are required for Cashback, Custom reward and Percentage discount code , than for other types i.e. discount code, free delivery etc.

[image: Custom Campaign Basic Information]

	When you choose Custom campaign, in the Basic information section related to the default language version do the following

	Enter unique reward Name

	If needed, provide a Short description of the reward campaign detail using rich media format

	If applicable, in Condition description field, provide a description of the conditions of getting a reward using rich media format

	If needed, in Brand name field provide the name of the brand, that will be display in Client cockpit

	If needed, provide a Brand description of the reward campaign using rich media format

	If applicable, fulfill the same fields in other language version e.g. polish as on a screen above

[image: Custom campaign details]

	In the Campaign details section do the following

	To make reward available for customer, in Active field select “Active” from the dropdown list

	If needed, enter URL to the content page in More information link field, that explains your reward campaign or to external web with reward details

	If applicable, in Push notification text provide a text message that will be displayed as a push notification for Customer, when reward becomes available for them

	If applicable, In Reward value field provide a monetary value of reward

	If needed, enter Tax rate that applies to the reward and monetary value of tax for reward in Tax value

	If applicable, mark Featured checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

	If applicable, mark Public checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

Note

If Push notification text is not provided, notification about new reward availability will not be displayed.

It does not change the fact that the reward will be available for customer and display in Available rewards section in Admin and Client cockpit.

	In the same Campaign details section, if applicable, create Label(s) you want refer to reward. Labels are intended to be used to specify identifying attributes of reward campaign.

Labels can be used only when you use API to organize subsets of rewards and make filtering/searching rewards campaign easier. Through API you will be able to get list of all rewards with specified key or key and value.

	To create Label, tap Add Label and do the following:

	Type label Key, which is a label name

	Type label Value

For example: Key – Event, Value – Birthday.

	Repeat the process for all labels you want to used in your Loyalty Program

[image: Reward Campaign Labels]

Note

Filtering/Searching via API allows you to get list of all rewards related to events or (more specified) related to birthday event.

Note

Labels can be added to reward campaign during reward creation and subsequently added and modified at any time

	In the same Campaign details section, in Categories field, select campaign category or categories to be assigned to this reward campaign. You can assign more than one campaign category.

[image: Campaign category]

	In the same Campaign details section, in Connect type field, set earning rule type that will be linked with this campaign, to one of the following:

	
	Geolocation earning rule

	Customer could receive points for his location

	
	QRCode earning rule

	Customer could receive points for scanning define QR code

	
	None

	Any earning rule linked

If you choose any other type than None, choose one of the Earning rule from a dropdown (related to the type chosen in previous step)

[image: Earning rule]

Note

Displaying earning rule names will be related with type chosen in previous step.

For example, if you set Connect type to Geolocation earning rule, only Geolocation earning rules will be listed.

	Brand info section allows to upload an image of the reward brand, that will be displayed in Client cockpit

[image: Brand info]

	A reward can be extended to members of a specific customer group. In the Target section identify the customer group that qualifies to receive the reward

	In Target type field, select from dropdown list Level or Segment to specify whether the reward will be available for customers assigned to particular level or segment

	Depending on selected Target type, field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Target]

	To make the reward visible on the storefront for a limited period of time, complete the From and To dates in Visibility section

	In Visible from field set the first date the reward is visible. You can either enter the date or select it from the calendar

	In Visible to field set the last date the reward is visible. You can either enter the date or select it from the calendar

	If you want the reward to be visible all the time mark All time visible checkbox. When you choose that option Visible from and Visible to fields will not be available.

[image: Reward Visibility]

Note

Visible to and Visible from fields are available only when reward visibility is limited

	Activity section defines time boundaries when reward can be used by customers. To make the reward available for a limited period of time, complete the From and To dates in Activity section:

	In Active from field set the first date the reward is available. You can either enter the date or select it from the calendar

	In Active to field set the last date the reward is available. You can either enter the date or select it from the calendar

	If you want the reward to be active all the time mark All time active checkbox. When you choose that option Active from and Active to fields will not be available.

[image: Activity]

Note

Active to and Active from fields are available only when reward activity (availability) is limited

Note

Status of the Reward campaign (Active/Inactive) has higher priority than time boundaries from Active section.

Even if time boundaries from Activity section will be valid, changing Status to Inactive means that reward will not be available to customers.

	If applicable, in Campaign photo section upload reward images that will be visible in the storefront

	To add a photo tap Upload to import main image

	To add more images click Add photo and then upload another photo. Reapeat it for all photos that you want add.

	To remove a photo click remove [image: remove_photo] icon near by particular field (during creation)

	To remove images after creation click bin [image: bin] icon in the photo upper right corner (in edit mode)

All added images will be visible in Campaign photos field after save

[image: Reward photo]

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

	When it is done, tap SAVE

Warning

Currently Custom campaigns are not visible for a customer in Available rewards section in the Client Cockpit

Free delivery

Customer can get free shipping coupon that can be applied to reduce delivery cost for next purchase.
Customer needs to “buy” this reward, using his Active points pool.
Cost of this reward is specified during creation in Cost in points field.

During creation you can also specify if all customers will receive the same coupon code, or different one and limit the coupons usage (in general and per customer).

For example

	if limit in general is equal 10, limit per customer is 1 and single coupon marked - then only the first ten clients will be able to use the coupon (each of them only once) and the coupon code will be the same for everyone,

	if limit in general is equal 10, limit per customer is 1 and single coupon unmarked - then only the first ten clients will be able to use the coupon (each of them only once) and the coupon code will be different.

Number of codes depends on number of uploaded coupon codes during reward creation e.g. if you uploaded 2 different codes, only those two will be randomly assigned to those customers. In other words, there can be situation that several of them receive the same codes.

Tip

To avoid situation that some of customers can receive the same coupon code, upload as many different coupon codes as the limit in genral

To create a Free delivery reward:

	In the Admin sidebar, tap Reward campaigns. Then, choose Add reward campaign. You can also add new reward directly from All reward campaigns list by clicking Add reward campaign at the top of the page

[image: Add Reward Options]

	In the Campaign type section select a Free delivery reward type from a dropdown list (by default Discount code is displaying)

[image: Free delivery type]

Note

Depending on the selected Campaign type, a Basic information and next section - Campaign details, will display different fields to filled in.

Different fields are required for Cashback, Custom reward and Percentage discount code , than for other types i.e. discount code, free delivery etc.

[image: Free delivery Basic Information]

	When you choose Free deliverye, in the Basic information section related to the default language version do the following

	Enter unique reward Name

	If needed, provide a Short description of the reward campaign detail using rich media format

	If applicable, in Condition description field, provide a description of the conditions of getting a reward using rich media format

	If applicable, enter description How to use coupons codes, to display on the storefront instructions how to get/use reward for customers

	If needed, in Brand name field provide the name of the brand, that will be display in Client cockpit

	If needed, provide a Brand description of the reward campaign using rich media format

	If applicable, fulfill the same fields in other language version e.g. polish as on a screen above

[image: Free delivery Campaign Details]

	In the Campaign details section do the following

	To make reward available for customer, in Active field select “Active” from the dropdown list

	If needed, enter URL to the content page in More information link field, that explains your reward campaign or to external web with reward details

	If applicable, in Push notification text provide a text message that will be displayed as a push notification for Customer, when reward become available for him

	In Cost in points field, enter the number of points represented by the reward to define how many points customer needs to spend to get a reward

	If applicable, In Reward value field provide a monetary value of reward

	If needed, enter Tax rate that applies to the reward and monetary value of tax for reward in Tax value

	If applicable, mark Featured checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

	If applicable, mark Public checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

Note

If Push notification text is not provided, notification about new reward availability will not be displayed.

It does not change the fact that the reward will be available for customer and display in Available rewards section in Admin and Client cockpit.

	In the same Campaign details section, if applicable, create Label(s) you want refer to reward. Labels are intended to be used to specify identifying attributes of reward campaign.

Labels can be used only when you use API to organize subsets of rewards and make filtering/searching rewards campaign easier. Through API you will be able to get list of all rewards with specified key or key and value.

	To create Label, tap Add Label and do the following:

	Type label Key, which is a label name

	Type label Value

For example: Key – Event, Value – Birthday.

	Repeat the process for all labels you want to used in your Loyalty Program

[image: Reward Campaign Labels]

Note

Filtering/Searching via API allows you to get list of all rewards related to events or (more specified) related to birthday event.

Note

Labels can be added to reward campaign during reward creation and subsequently added and modified at any time

	In the same Campaign details section, in Categories field, select campaign category or categories to be assign to this reward campaign. You can assign more than one campaign category.

[image: Campaign category]

	Brand info section allow to upload an image of the reward brand, that will be display in Client cockpit

[image: Brand info]

	A reward can be extended to members of a specific customer group. In the Target section identify the customer group that qualifies to receive the reward

	In Target type field, select from dropdown list Level or Segment to specify whether the reward will be available for customers assigned to particular level or segment

	Depending on selected Target type, field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Target]

	To limit the number of times each customer can use the coupon, enter the number of usage limits in Limit section. To limit the number of times the coupon can be used, complete the limits in Limit section:

	In Limit field, define how many reward codes could be used during time boundaries from Activity section

	In Limit per customer field, define how many reward codes could be used by one customer during time boundaries from Activity section

	For unlimited use, mark Use of the coupon code is not limited checkbox. When you choose that option Limit and Limit per customer fields will not be available

	Mark Single Coupon checkox to allow use the same coupon code by all customers. Unmarked checkbox means that customers receive different coupon codes (depedning on number uploaded in Coupons section)

[image: Limit]

	Add batch of Coupons to be used with the reward.

Type manually a Coupons codes to be used by customer or Upload coupons list of codes from CSV file.

	In Days inactive define number of days during which coupons assign to this campaign will be inactive since the transaction date.

If you want make coupons valid instantly, provide 0

	In Days valid specify number of days during which coupon assign to this campaign will be active since the inactive time boundaries finished. After provided here number of days voucher will expired.

If you want your coupons never expired, provide 0

[image: Coupons]

	To make the reward visible on the storefront for a limited period of time, complete the From and To dates in Visibility section

	In Visible from field set the first date the reward is visible. You can either enter the date or select it from the calendar

	In Visible to field set the last date the reward is visible. You can either enter the date or select it from the calendar

	If you want the reward to be visible all the time mark All time visible checkbox. When you choose that option Visible from and Visible to fields will not be available.

[image: Reward Visibility]

Note

Visible to and Visible from fields are available only when reward visibility is limited

	Activity section defines time boundaries when reward can be used by customers. To make the reward available for a limited period of time, complete the From and To dates in Activity section:

	In Active from field set the first date the reward is available. You can either enter the date or select it from the calendar

	In Active to field set the last date the reward is available. You can either enter the date or select it from the calendar

	If you want the reward to be active all the time mark All time active checkbox. When you choose that option Active from and Active to fields will not be available.

[image: Activity]

Note

Active to and Active from fields are available only when reward activity (availability) is limited

Note

Status of the Reward campaign (Active/Inactive) has higher priority than time boundaries from Active section.

Even if time boundaries from Activity section will be valid, changing Status to Inactive means that reward will not be available to customers.

	If applicable, in Campaign photo section upload reward images that will be visible on the storefront

	To add a photo tap Upload to import main image

	To add more images click Add photo and then upload another photo. Reapeat it for all photos that you want add.

	To remove a photo click remove [image: remove_photo] icon near by particular field (during creation)

	To remove images after creation click bin [image: bin] icon in the photo upper right corner (in edit mode)

All added images will be visible in Campaign photos field after save

[image: Reward photo]

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

	When it is done, tap SAVE

Discount code

Customer can get percentage discount that can be applied to reduce future order amount, e.g. 25% off for next purchase. Customer need to “buy” reward, using his Active points pool. Cost of this reward is specified during creation in Cost in points field.

During creation you can also specified if all customers will received the same coupon code, or different one and limits of coupons usage (in general and per customer)

For example

	if limit in general is equal to 10, limit per customer is 1 and single coupon marked - then only the first ten clients will be able to use the coupon (each of them only once) and the coupon code will be the same for everyone

	if limit in general is equal to 10, limit per customer is 1 and single coupon unmarked - then only the first ten clients will be able to use the coupon (each of them only once) and the coupon code will be different.

Number of codes depends on number of uploaded coupon codes during reward creation e.g. if you uploaded 2 different codes, only those two will be randomly assigned to those customers. Another words, there can be situation that several of them receive the same codes.

Tip

To avoid situation that some of customers can receive the same coupon code, upload as many different coupon codes as the limit in genral

To create Discount code reward:

	On the Admin sidebar, tap Reward campaigns. Then, choose Add reward campaign. You can also add new reward directly from All reward campaigns list by clicking Add reward campaign at the top of the page

[image: Add Reward Options]

	In the Campaign type section select a Discount code reward type from a dropdown list (by default Discount code is displaying)

[image: Discount code type]

Note

Depending on the selected Campaign type, Basic information section and the next one, Campaign details, will display different fields to filled in.

Different fields are required for Cashback, Custom reward and Percentage discount code , than for other types i.e. discount code, free delivery etc.

[image: Discount code Basic Information]

	When you choose Discount code, in the Basic information section related to the default language version do the following

	Enter unique reward Name

	If needed, provide a Short description of the reward campaign detail using rich media format

	If applicable, in Condition description field, provide a description of the conditions of getting a reward using rich media format

	If applicable, enter description How to use coupons codes, to display on the storefront instructions how to get/use reward for customers

	If needed, in Brand name field provide the name of the brand, that will be display in Client cockpit

	If needed, provide a Brand description of the reward campaign using rich media format

	If applicable, fulfill the same fields in other language version e.g. polish as on a screen above

[image: Discount code Campaign Details]

	In the Campaign details section do the following

	To make reward available for customer, in Active field select “Active” from the dropdown list

	If needed, enter URL to the content page in More information link field, that explains your reward campaign or to external web with reward details

	If applicable, in Push notification text provide a text message that will be displayed as a push notification for Customer, when reward become available for him

	In Cost in points field, enter the number of points represented by the reward to define how many points customer needs to spend to get a reward

	If applicable, In Reward value field provide a monetary value of reward

	If needed, enter Tax rate that applies to the reward and monetary value of tax for reward in Tax value

	If applicable, mark Featured checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

	If applicable, mark Public checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

Note

If Push notification text is not provided, notification about new reward availability will not be displayed.

It does not change the fact that the reward will be available for customer and display in Available rewards section in Admin and Client cockpit.

	In the same Campaign details section, if applicable, create Label(s) you want refer to reward. Labels are intended to be used to specify identifying attributes of reward campaign.

Labels can be used only when you use API to organize subsets of rewards and make filtering/searching rewards campaign easier. Through API you will be able to get list of all rewards with specified key or key and value.

	To create Label, tap Add Label and do the following:

	Type label Key, which is a label name

	Type label Value

For example: Key – Event, Value – Birthday.

	Repeat the process for all labels you want to used in your Loyalty Program

[image: Reward Campaign Labels]

Note

Filtering/Searching via API allows you to get list of all rewards related to events or (more specified) related to birthday event.

Note

Labels can be added to reward campaign during reward creation and subsequently added and modified at any time

	In the same Campaign details section, in Categories field, select campaign category or categories to be assigned to this reward campaign. You can assign more than one campaign category.

[image: Campaign category]

	Brand info section allows to upload an image of the reward brand, that will be displayed in Client cockpit

[image: Brand info]

	A reward can be extended to members of a specific customer group. In the Target section identify the customer group that qualifies to receive the reward

	In Target type field, select from dropdown list Level or Segment to specify whether the reward will be available for customers assigned to particular level or segment

	Depending on selected Target type, field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Target]

	To limit the number of times each customer can use the coupon, enter the number of usage limits in Limit section. To limit the number of times the coupon can be used, complete the limits in Limit section:

	In Limit field, define how many reward codes could be used during time boundaries from Activity section

	In Limit per customer field, define how many reward codes could be used by one customer during time boundaries from Activity section

	For unlimited use, mark Use of the coupon code is not limited checkbox. When you choose that option Limit and Limit per customer fields will not be available

	Mark Single Coupon checkox to allow use the same coupon code by all customers. Unmarked checkbox means that customers receive different coupon codes (depedning on number uploaded in Coupons section)

[image: Limit]

	Add batch of Coupons to be used with the reward.

Type manually a Coupons codes to be used by customer or Upload coupons list of codes from CSV file.

	In Days inactive define number of days during which coupons assign to this campaign will be inactive since the transaction date.

If you want make coupons valid instantly, provide 0

	In Days valid specify number of days during which coupon assign to this campaign will be active since the inactive time boundaries finished. After provided here number of days voucher will expired.

If you want your coupons never expired, provide 0

[image: Coupons]

	To make the reward visible on the storefront for a limited period of time, complete the From and To dates in Visibility section

	In Visible from field set the first date the reward is visible. You can either enter the date or select it from the calendar

	In Visible to field set the last date the reward is visible. You can either enter the date or select it from the calendar

	If you want the reward to be visible all the time mark All time visible checkbox. When you choose that option Visible from and Visible to fields will not be available.

[image: Reward Visibility]

Note

Visible to and Visible from fields are available only when reward visibility is limited

	Activity section define time boundaries when reward can be used by customers. To make the reward available for a limited period of time, complete the From and To dates in Activity section:

	In Active from field set the first date the reward is available. You can either enter the date or select it from the calendar

	In Active to field set the last date the reward is available. You can either enter the date or select it from the calendar

	If you want the reward to be active all the time mark All time active checkbox. When you choose that option Active from and Active to fields will not be available.

[image: Activity]

Note

Active to and Active from fields are available only when reward activity (availability) is limited

Note

Status of the Reward campaign (Active/Inactive) has higher priority than time boundaries from Active section.

Even if time boundaries from Activity section will be valid, changing Status to Inactive means that reward will not be available to customers.

	If applicable, in Campaign photo section upload reward images that will be visible on the storefront

	To add a photo tap Upload to import main image

	To add more images click Add photo and then upload another photo. Reapeat it for all photos that you want add.

	To remove a photo click remove [image: remove_photo] icon near by particular field (during creation)

	To remove images after creation click bin [image: bin] icon in the photo upper right corner (in edit mode)

All added images will be visible in Campaign photos field after save

[image: Reward photo]

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

	When it is done, tap SAVE

Fulfillment tracking process

Note

this feature is related ONLY with Gift campaign type

When customer redeemed Gift reward from the Client Cockpit, it will be displayed as Delivered on Redeemed rewards list in Redeemed rewards section. Displaying as Delivered means unmark checkbox in Unused/used column.

From the Admin, you can mark reward as Used to start the shipping process. To mark reward as Used mark checkbox to selected gift-type reward record in Unused / used column. After that reward Delivery status will be assigned as Ordered.

[image: Gift statuses]
When you mark reward as used, you will receive Reward Redeemed email/SMS notification including information about used gift-type reward, customer and his address on which reward should be sent. The delivery address is the same address as the one assigned during registration, displayed in Profile details

[image: Reward redeemed email]
Depending on the shipping process, you can freely change your Delivery status to one of the following:

	
	Ordered

	when reward is mark as used and you can start the shipping process

	
	Shipped

	when the reward was sent to the customer’s address

	
	Delivered

	when the reward was received by the customer

	
	Canceled

	when reward shipping process was canceled e.g. when the customer has given up the reward. You can change status to canceled at any time, regardless of previous one.

Gift

Customer can get material reward i.e. gift. Instead of traditional gift, within loyalty program customer need to “buy” reward, using his Active points pool. Cost of this reward is specified during creation in Cost in points field.

During creation you can also specify limits of reward redemption (in general and per customer)

For example

	if limit in general is equal to 10, limit per customer is equal to 1 - then only the first ten clients will be able to get reward (each of them only once)

	if limit in general is equal to 10, limit per customer is equal to 2 - then only the first ten clients will be able to get reward (each of them twice)

Note

During reward creation you must upload coupon codes. Coupon codes will not be displayed to customers on a storefront in Client Cockpit (after reward redemption). The coupon code assigned to the redeemed reward will be visible from the admin in the Redeemed reward grid.

To create Gift reward:

	Tap Reward campaigns on the Admin sidebar and choose Add reward campaign. You can also add new reward directly from All reward campaigns list by clicking Add reward campaign at the top of the page

[image: Add Reward Options]

	Scroll down to Campaign type section and select a Gift reward type from a dropdown list (Discount code is displayed by default)

[image: Gift type]
If you want to manage the reward delivery statuses and monitor them mark Fulfillment tracking process checkbox. More information about this feature you will find here

Note

Depending on the selected Campaign type, a Basic information and next section - Campaign details, will display different fields to filled in.

Different fields are required for Cashback, Custom reward and Percentage discount code , than for other types i.e. discount code, free delivery etc.

[image: Gift Basic Information]

	When you choose Gift, in the Basic information section related to the default language version do the following

	Enter unique reward Name

	If needed, provide a Short description of the reward campaign detail using rich media format

	If applicable, in Condition description field, provide a description of the conditions of getting a reward using rich media format

	If applicable, enter description How to use coupons codes, to display on the storefront instructions how to get/use reward for customers

	If needed, in Brand name field provide the name of the brand, that will be display in Client cockpit

	If needed, provide a Brand description of the reward campaign using rich media format

	If applicable, fulfill the same fields in other language version e.g. polish as on a screen above

[image: Gift Campaign Details]

	In the Campaign details section do the following

	To make reward available for customer, in Active field select “Active” from the dropdown list

	If needed, enter URL to the content page in More information link field, that explains your reward campaign or to external web with reward details

	If applicable, in Push notification text provide a text message that will be displayed as a push notification for Customer, when reward will become available for him

	In Cost in points field, enter the number of points represented by the reward to define how many points customer needs to spend to get a reward

	If applicable, In Reward value field provide a monetary value of reward

	If needed, enter Tax rate that applies to the reward and monetary value of tax for reward in Tax value

	If applicable, mark Featured checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

	If applicable, mark Public checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

Note

If Push notification text is not provided, notification about new reward availability will not be displayed.

It does not change the fact that the reward will be available for customer and display in Available rewards section in Admin and Client cockpit.

	In the same Campaign details section, if applicable, create Label(s) you want refer to reward. Labels are intended to be used to specify identifying attributes of reward campaign.

Labels can be used only when you use API to organize subsets of rewards and make filtering/searching rewards campaign easier. Through API you will be able to get list of all rewards with specified key or key and value.

	To create Label, tap Add Label and do the following:

	Type label Key, which is a label name

	Type label Value

For example: Key – Event, Value – Birthday.

	Repeat the process for all labels you want to used in your Loyalty Program

[image: Reward Campaign Labels]

Note

Filtering/Searching via API allows you to get list of all rewards related to events or (more specified) related to birthday event.

Note

Labels can be added to reward campaign during reward creation and subsequently added and modified at any time

	In the same Campaign details section, in Categories field, select campaign category or categories to be assigned to this reward campaign. You can assign more than one campaign category.

[image: Campaign category]

	Brand info section allows to upload an image of the reward brand, that will be displayed in Client cockpit

[image: Brand info]

	A reward can be extended to members of a specific customer group. In the Target section identify the customer group that qualifies to receive the reward

	In Target type field, select from dropdown list Level or Segment to specify whether the reward will be available for customers assigned to particular level or segment

	Depending on selected Target type, field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Target]

	To limit the number of times each customer can redeem reward, enter the number of usage limits in Limit section. To limit the number of times the reward can be redeemed, complete the limits in Limit section:

	In Limit field, define how many times reward could be redeemed during time boundaries from Activity section

	In Limit per customer field, define how many times reward could be redeemed by one customer during time boundaries from Activity section

	For unlimited use, mark Use of the coupon code is not limited checkbox. When you choose that option Limit and Limit per customer fields will not be available

	Mark Single Coupon checkox to assign the same coupon code for all customers. Unmarked checkbox means that customers receive different coupon codes (depedning on number uploaded in Coupons section)

[image: Limit]

Note

Coupon codes will not be displayed to customers on a storefront in Client Cockpit (after reward redemption). The coupon code assigned to the redeemed reward will be visible from the admin in the Redeemed reward grid.

	Add batch of Coupons to be used with the reward.

Type manually a Coupons codes to be used by customer or Upload coupons list of codes from CSV file.

	In Days inactive define number of days during which coupons assign to this campaign will be inactive since the transaction date.

If you want make coupons valid instantly, provide 0

	In Days valid specify number of days during which coupon assigned to this campaign will be active since the inactive time boundaries finished. After providing here number of days voucher will be expired.

If you want your coupons never expired, provide 0

[image: Coupons]

Note

Uploaded Coupon codes will not be displayed to customers on a storefront in Client Cockpit (after reward redemption). They will be visible from the admin in the Redeemed reward grid.

	To make the reward visible on the storefront for a limited period of time, complete the From and To dates in Visibility section

	In Visible from field set the first date the reward is visible. You can either enter the date or select it from the calendar

	In Visible to field set the last date the reward is visible. You can either enter the date or select it from the calendar

	If you want the reward to be visible all the time mark All time visible checkbox. When you choose that option Visible from and Visible to fields will not be available.

[image: Reward Visibility]

Note

Visible to and Visible from fields are available only when reward visibility is limited

	Activity section defines time boundaries when reward can be used by customers. To make the reward available for a limited period of time, complete the From and To dates in Activity section:

	In Active from field set the first date the reward is available. You can either enter the date or select it from the calendar

	In Active to field set the last date the reward is available. You can either enter the date or select it from the calendar

	If you want the reward to be active all the time mark All time active checkbox. When you choose that option Active from and Active to fields will not be available.

[image: Activity]

Note

Active to and Active from fields are available only when reward activity (availability) is limited

Note

Status of the Reward campaign (Active/Inactive) has higher priority than time boundaries from Active section.

Even if time boundaries from Activity section will be valid, changing Status to Inactive means that reward will not be available to customers.

	If applicable, in Campaign photo section upload reward images that will be visible on the storefront

	To add a photo tap Upload to import main image

	To add more images click Add photo and then upload another photo. Reapeat it for all photos that you want add.

	To remove a photo click remove [image: remove_photo] icon near by particular field (during creation)

	To remove images after creation click bin [image: bin] icon in the photo upper right corner (in edit mode)

All added images will be visible in Campaign photos field after save

[image: Reward photo]

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

	When it is done, tap SAVE

Rewards creation

Invitation for the event

You can offer for your customer as a reward invitation for business & corporate events or other depending on your business, e.g. conference. Customer need to “buy” reward, using his Active points pool. Cost of this reward is specified during creation in Cost in points field.

During creation you can also specified if all customers will received the same coupon code, or different one and limits of reward redemption (in general and per customer)

For example

	if limit in general is equal to 10, limit per customer is equal to 1 and single coupon marked - then only the first ten clients will be able to use the invitation (each of them only once) and the invitation’s coupon code will be the same for everyone

	if limit in general is equal to 10, limit per customer is equal to 1 and single coupon unmarked - then only the first ten clients will be able to use the invitation (each of them only once) and the invitation’s coupon code will be different.

Number of codes depends on number of uploaded coupon codes during reward creation e.g. if you uploaded 2 different codes, only those two will be randomly assigned to those customers. Another words, there can be situation that several of them receive the same codes.

Tip

To avoid situation that some of customers can receive the same coupon code, upload as many different coupon codes as the limit in general

To create Invitation for the event reward:

	Tap Reward campaigns on the Admin sidebar and choose Add reward campaign. You can also add new reward directly from All reward campaigns list by clicking Add reward campaign at the top of the page

[image: Add Reward Options]

	In the Campaign type section select an Invitation for the event reward type from a dropdown list (Discount code is displayed by default)

[image: Invitation for the event type]

Note

Depending on the selected Campaign type, a Basic information and next section - Campaign details, will display different fields to fill in.

Different fields are required for Cashback, Custom reward and Percentage discount code , than for other types i.e. discount code, free delivery etc.

[image: Invitation Basic Information]

	When you choose Invitation for the event, in the Basic information section related to the default language version do the following

	Enter unique reward Name

	If needed, provide a Short description of the reward campaign detail using rich media format

	If applicable, in Condition description field, provide a description of the conditions of getting a reward using rich media format

	If applicable, enter description How to use coupons codes, to display on the storefront instructions how to get/use reward for customers

	If needed, in Brand name field provide the name of the brand, that will be display in Client cockpit

	If needed, provide a Brand description of the reward campaign using rich media format

	If applicable, fulfill the same fields in other language version e.g. polish as on a screen above

[image: Invitation Campaign Details]

	In the Campaign details section do the following

	To make reward available for customer, in Active field select “Active” from the dropdown list

	If needed, enter URL to the content page in More information link field, that explains your reward campaign or to external web with reward details

	If applicable, in Push notification text provide a text message that will be displayed as a push notification for Customer, when reward becomes available for him

	In Cost in points field, enter the number of points represented by the reward to define how many points customer needs to spend to get a reward

	If applicable, In Reward value field provide a monetary value of reward

	If needed, enter Tax rate that applies to the reward and monetary value of tax for reward in Tax value

	If applicable, mark Featured checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

	If applicable, mark Public checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

Note

If Push notification text is not provided, notification about new reward availability will not be displayed.

It does not change the fact that the reward will be available for customer and display in Available rewards section in Admin and Client cockpit.

	In the same Campaign details section, if applicable, create Label(s) you want refer to reward. Labels are intended to be used to specify identifying attributes of reward campaign.

Labels can be used only when you use API to organize subsets of rewards and make filtering/searching rewards campaign easier. Through API you will be able to get list of all rewards with specified key or key and value.

	To create Label, tap Add Label and do the following:

	Type label Key, which is a label name

	Type label Value

For example: Key – Event, Value – Birthday.

	Repeat the process for all labels you want to used in your Loyalty Program

[image: Reward Campaign Labels]

Note

Filtering/Searching via API allows you to get list of all rewards related to events or (more specified) related to birthday event.

Note

Labels can be added to reward campaign during reward creation and subsequently added and modified at any time

	In the same Campaign details section, in Categories field, select campaign category or categories to be assign to this reward campaign. You can assign more than one campaign category.

[image: Campaign category]

	Brand info section allows to upload an image of the reward brand, that will be display in Client cockpit

[image: Brand info]

	A reward can be extended to members of a specific customer group. In the Target section identify the customer group that qualifies to receive the reward

	In Target type field, select from dropdown list Level or Segment to specify whether the reward will be available for customers assigned to particular level or segment

	Depending on selected Target type, field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Target]

	To limit the number of times each customer can redeem reward, enter the number of usage limits in Limit section. To limit the number of times the reward can be redeemed, complete the limits in Limit section:

	In Limit field, define how many times reward could be redeemed during time boundaries from Activity section

	In Limit per customer field, define how many times reward could be redeemed by one customer during time boundaries from Activity section

	For unlimited use, mark Use of the coupon code is not limited checkbox. When you choose that option Limit and Limit per customer fields will not be available

	Mark Single Coupon checkox to assign the same coupon code for all customers. Unmarked checkbox means that customers receive different coupon codes (depedning on number uploaded in Coupons section)

[image: Limit]

	Add batch of Coupons to be used with the reward.

Type manually a Coupons codes to be used by customer or Upload coupons list of codes from CSV file.

	In Days inactive define number of days during which coupons assign to this campaign will be inactive since the transaction date.

If you want make coupons valid instantly, provide 0

	In Days valid specify number of days during which coupon assign to this campaign will be active since the inactive time boundaries finished. After provided here number of days voucher will expired.

If you want your coupons never expired, provide 0

[image: Coupons]

Note

Uploaded Coupon codes will not be displayed to customers on a storefront in Client Cockpit (after reward redemption).
They will be visible from the admin in the Redeemed reward grid.

	To make the reward visible on the storefront for a limited period of time, complete the From and To dates in Visibility section

	In Visible from field set the first date the reward is visible. You can either enter the date or select it from the calendar

	In Visible to field set the last date the reward is visible. You can either enter the date or select it from the calendar

	If you want the reward to be visible all the time mark All time visible checkbox. When you choose that option Visible from and Visible to fields will not be available.

[image: Reward Visibility]

Note

Visible to and Visible from fields are available only when reward visibility is limited

	Activity section define time boundaries when reward can be used by customers. To make the reward available for a limited period of time, complete the From and To dates in Activity section:

	In Active from field set the first date the reward is available. You can either enter the date or select it from the calendar

	In Active to field set the last date the reward is available. You can either enter the date or select it from the calendar

	If you want the reward to be active all the time mark All time active checkbox. When you choose that option Active from and Active to fields will not be available.

[image: Activity]

Note

Active to and Active from fields are available only when reward activity (availability) is limited

Note

Status of the Reward campaign (Active/Inactive) has higher priority than time boundaries from Active section.

Even if time boundaries from Activity section are valid, changing Status to Inactive means that reward will not be available to customers.

	If applicable, in Campaign photo section upload reward images that will be visible on the storefront

	To add a photo tap Upload to import main image

	To add more images click Add photo and then upload another photo. Reapeat it for all photos that you want add.

	To remove a photo click remove [image: remove_photo] icon near by particular field (during creation)

	To remove images after creation click bin [image: bin] icon in the photo upper right corner (in edit mode)

All added images will be visible in Campaign photos field after save

[image: Reward photo]

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

	When it is done, tap SAVE

Percentage discount code

After purchase customer can receive value discount for next purchase base on registered order amount.
Discount is calculated based on Transaction percentage value.
Discount will be equal to percentage value of transaction provided in Transaction percentage value field.

Note

If more than one Percentage discount code campaign is available and active all will be applied.

So it is possible that the customer will receive several value codes of different value.

For example

	local currency is EUR

	Transaction percentage value is equal to 10 (i.e. 10% of registered transaction total amount)

If Customer total amount of transaction is 100 EUR, he will receive 10 EUR discount for next purchase

If Customer total amount of transaction is 47 EUR, he will receive 5 EUR discount for next purchase

If Customer total amount of transaction is 32 EUR, he will receive 3 EUR discount for next purchase

Note

Percentage discount code must be match with specified customer transaction to be used.

It can be match manually by Admin from Reward campaign list or automatically assigned within Instant reward rule

To create Percentage discount code reward:

	On the Admin sidebar, tap Reward campaigns and choose Add reward campaign. You can also add new reward directly from All reward campaigns list by clicking Add reward campaign at the top of the page

[image: Add Reward Options]

	In the Campaign type section select a Percentage discount code reward type from a dropdown list (Discount code is displayed by default)

[image: Percentage discount code type]

Note

Depending on the selected Campaign type, a Basic information and next section - Campaign details, will display different fields to filled in.

Different fields are required for Cashback, Custom reward and Percentage discount code , than for other types i.e. discount code, free delivery etc.

[image: Percentage discount code Basic Information]

	When you choose Percentage discount code, in the Basic information section related to the default language version do the following

	Enter unique reward Name

	If needed, provide a Short description of the reward campaign detail using rich media format

	If needed, in Brand name field provide the name of the brand, that will be display in Client cockpit

	If needed, provide a Brand description of the reward campaign using rich media format

	If applicable, fulfill the same fields in other language version e.g. polish as on a screen above

[image: Percentage discount code campaign details]

	In the Campaign details section do the following

	To make reward available for customer, in Active field select “Active” from the dropdown list

	If needed, enter URL to the content page in More information link field, that explains your reward campaign or to external web with reward details

	If applicable, in Push notification text provide a text message that will be displayed as a push notification for Customer, when reward become available for him

	In Transaction percentage value field provide a value of voucher which is calculated based on the transaction amount.

For example, if you enter 10, customer receive voucher worth 10% of the transaction value.

	If applicable, In Reward value field provide a monetary value of reward

	If needed, enter Tax rate that applies to the reward and monetary value of tax for reward in Tax value

	If applicable, mark Featured checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

	If applicable, mark Public checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

Note

If Push notification text is not provided, notification about new reward availability will not be displayed.

It does not change the fact that the reward will be available for customer and display in Available rewards section in Admin and Client cockpit.

	In the same Campaign details section, if applicable, create Label(s) you want refer to reward. Labels are intended to be used to specify identifying attributes of reward campaign.

Labels can be used only when you use API to organize subsets of rewards and make filtering/searching rewards campaign easier. Through API you will be able to get list of all rewards with specified key or key and value.

	To create Label, tap Add Label and do the following:

	Type label Key, which is a label name

	Type label Value

For example: Key – Event, Value – Birthday.

	Repeat the process for all labels you want to used in your Loyalty Program

[image: Reward Campaign Labels]

Note

Filtering/Searching via API allows you to get list of all rewards related to events or (more specified) related to birthday event.

Note

Labels can be added to reward campaign during reward creation and subsequently added and modified at any time

	In the same Campaign details section, in Categories field, select campaign category or categories to be assign to this reward campaign. You can assign more than one campaign category.

[image: Campaign category]

	Brand info section allow to upload an image of the reward brand, that will be display in Client cockpit

[image: Brand info]

	A reward can be extended to members of a specific customer group. In the Target section identify the customer group that qualifies to receive the reward

	In Target type field, select from dropdown list Level or Segment to specify whether the reward will be available for customers assigned to particular level or segment

	Depending on selected Target type, field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Target]

	In the Coupons section set the discount coupon expiration and inactive time boundaries

	In Days inactive define number of days during which coupons assign to this campaign will be inactive since the transaction date.

If you want make coupons valid instantly, provide 0

	In Days valid specify number of days during which coupon assign to this campaign will be active since the inactive time boundaries finished. After provided here number of days voucher will expired.

If you want your coupons never expired, provide 0

[image: Coupons]

	Activity section defines time boundaries when reward can be used by customers. To make the reward available for a limited period of time, complete the From and To dates in Activity section:

	In Active from field set the first date the reward is available. You can either enter the date or select it from the calendar

	In Active to field set the last date the reward is available. You can either enter the date or select it from the calendar

	If you want the reward to be active all the time mark All time active checkbox. When you choose that option Active from and Active to fields will not be available.

[image: Activity]

Note

Active to and Active from fields are available only when reward activity (availability) is limited

Note

Status of the Reward campaign (Active/Inactive) has higher priority than time boundaries from Active section.

Even if time boundaries from Activity section will be valid, changing Status to Inactive means that reward will not be available to customers.

	When it is done, tap SAVE

Warning

Percentage discount code is not visible for a customer in Available rewards section in Client Cockpit

Reward campaigns types

Open Loyalty Reward campaigns gives you the ability to create unique rewards that customer can be awarded for a wide range of transaction and activities within your loyalty program.

During creation you determine time boundaries, when reward is available for customer, customers groups for whom the reward is available and defines the basic operating parameters.

Depending on the Translations settings, Basic information’s can be provided in different language versions (listed in Translations). Information from that section can be displayed on a Client cockpit depending on a chosen from the admin cockpit default language version.

Tip

For example

when default language is English, informations are displayed in English, but when we change it on polish as a default language, all basic informations will be displayed in polish (if provided).

[image: REWARD CAMPAIGNS TYPES]

Reward campaigns types

Open Loyalty offers following standard types:

	
	Cashback

	during purchase customer can exchange earned points for value discount and reduce order amount

More information about reward creation here

	
	Custom campaign

	possibility to link with geolocation or QRcode earning rule. Information about that connection will be accessible via API and in reward details.

More information about reward creation here

	
	Discount code

	percentage discount applied to reduce order amount, e.g. 25% off for next purchase

More information about reward creation here

	
	Free delivery

	free shipping promotion

More information about reward creation here

	
	Gift

	material article e.g. book

More information about reward creation here

	
	Invitation for the event

	invitation for business & corporate events or other depending on your business, e.g. conference

More information about reward creation here

	
	Percentage discount code

	percentage discount of registered order amount

More information about reward creation here

	
	Value code

	value discount applied to reduce order amount, e.g. 25 EUR off for next purchase

More information about reward creation here

Note

Percentage discount code and Custom campaign are not visible for a customer in Available rewards section

Value code

Customer can get value discount that can be applied to reduce future order amount, e.g. 25 EUR off for next purchase. Customer need to “buy” reward, using his Active points pool. Cost of this reward is specified during creation in Cost in points field.

During creation you can also specified if all customers will received the same coupon code, or different one and limits of coupons usage (in general and per customer)

For example

	if limit in general is equal to 10, limit per customer is 1 and single coupon marked - then only the first ten clients will be able to use the coupon (each of them only once) and the coupon code will be the same for everyone

	if limit in general is equal to 10, limit per customer is 1 and single coupon unmarked - then only the first ten clients will be able to use the coupon (each of them only once) and the coupon code will be different.

Number of codes depends on number of uploaded coupon codes during reward creation e.g. if you uploaded 2 different codes, only those two will be randomly assigned to those customers. Another words, there can be situation that several of them receive the same codes.

Tip

To avoid situation that some of customers can receive the same coupon code, upload as many different coupon codes as the limit in genral

To create Value code reward:

	Tap Reward campaigns on the Admin sidebar and choose Add reward campaign. You can also add new reward directly from All reward campaigns list by clicking Add reward campaign at the top of the page

[image: Add Reward Options]

	In the Campaign type section select a Value code reward type from a dropdown list (by default Discount code is displaying)

[image: Value code type]

Note

Depending on the selected Campaign type, a Basic information and next section - Campaign details, will display different fields to filled in.

Different fields are required for Cashback, Custom reward and Percentage discount code , than for other types i.e. discount code, free delivery etc.

[image: Value code Basic Information]

	When you choose Value code, in the Basic information section related to the default language version do the following

	Enter unique reward Name

	If needed, provide a Short description of the reward campaign detail using rich media format

	If applicable, in Condition description field, provide a description of the conditions of getting a reward using rich media format

	If applicable, enter description How to use coupons codes, to display on the storefront instructions how to get/use reward for customers

	If needed, in Brand name field provide the name of the brand, that will be display in Client cockpit

	If needed, provide a Brand description of the reward campaign using rich media format

	If applicable, fulfill the same fields in other language version e.g. polish as on a screen above

[image: Value code Campaign Details]

	In the Campaign details section do the following

	To make reward available for customer, in Active field select “Active” from the dropdown list

	If needed, enter URL to the content page in More information link field, that explains your reward campaign or to external web with reward details

	If applicable, in Push notification text provide a text message that will be displayed as a push notification for Customer, when reward become available for him

	In Cost in points field, enter the number of points represented by the reward to define how many points customer needs to spend to get a reward

	If applicable, In Reward value field provide a monetary value of reward

	If needed, enter Tax rate that applies to the reward and monetary value of tax for reward in Tax value

	If applicable, mark Featured checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

	If applicable, mark Public checkbox to differentiate campaign from the others. Feature is used when you want to filter campaigns using API

Note

If Push notification text is not provided, notification about new reward availability will not be displayed.

It does not change the fact that the reward will be available for customer and display in Available rewards section in Admin and Client cockpit.

	In the same Campaign details section, if applicable, create Label(s) you want refer to reward. Labels are intended to be used to specify identifying attributes of reward campaign.

Labels can be used only when you use API to organize subsets of rewards and make filtering/searching rewards campaign easier. Through API you will be able to get list of all rewards with specified key or key and value.

	To create Label, tap Add Label and do the following:

	Type label Key, which is a label name

	Type label Value

For example: Key – Event, Value – Birthday.

	Repeat the process for all labels you want to used in your Loyalty Program

[image: Reward Campaign Labels]

Note

Filtering/Searching via API allows you to get list of all rewards related to events or (more specified) related to birthday event.

Note

Labels can be added to reward campaign during reward creation and subsequently added and modified at any time

	In the same Campaign details section, in Categories field, select campaign category or categories to be assign to this reward campaign. You can assign more than one campaign category.

[image: Campaign category]

	Brand info section allows to upload an image of the reward brand, that will be display in Client cockpit

[image: Brand info]

	A reward can be extended to members of a specific customer group. In the Target section identify the customer group that qualifies to receive the reward

	In Target type field, select from dropdown list Level or Segment to specify whether the reward will be available for customers assigned to particular level or segment

	Depending on selected Target type, field Segments to specify segments or Levels to specify levels appear. You can choose one or more levels/segments to used

[image: Target]

	To limit the number of times each customer can use the coupon, enter the number of usage limits in Limit section. To limit the number of times the coupon can be used, complete the limits in Limit section:

	In Limit field, define how many reward codes could be used during time boundaries from Activity section

	In Limit per customer field, define how many reward codes could be used by one customer during time boundaries from Activity section

	For unlimited use, mark Use of the coupon code is not limited checkbox. When you choose that option Limit and Limit per customer fields will not be available

	Mark Single Coupon checkox to allow use the same coupon code by all customers. Unmarked checkbox means that customers receive different coupon codes (depedning on number uploaded in Coupons section)

[image: Limit]

	Add batch of Coupons to be used with the reward.

Type manually a Coupons codes to be used by customer or Upload coupons list of codes from CSV file.

	In Days inactive define number of days during which coupons assign to this campaign will be inactive since the transaction date.

If you want make coupons valid instantly, provide 0

	In Days valid specify number of days during which coupon assign to this campaign will be active since the inactive time boundaries finished. After provided here number of days voucher will be expired.

If you want your coupons never expired, provide 0

[image: Coupons]

	To make the reward visible on the storefront for a limited period of time, complete the From and To dates in Visibility section

	In Visible from field set the first date the reward is visible. You can either enter the date or select it from the calendar

	In Visible to field set the last date the reward is visible. You can either enter the date or select it from the calendar

	If you want the reward to be visible all the time mark All time visible checkbox. When you choose that option Visible from and Visible to fields will not be available.

[image: Reward Visibility]

Note

Visible to and Visible from fields are available only when reward visibility is limited

	Activity section defines time boundaries when reward can be used by customers. To make the reward available for a limited period of time, complete the From and To dates in Activity section:

	In Active from field set the first date the reward is available. You can either enter the date or select it from the calendar

	In Active to field set the last date the reward is available. You can either enter the date or select it from the calendar

	If you want the reward to be active all the time mark All time active checkbox. When you choose that option Active from and Active to fields will not be available.

[image: Activity]

Note

Active to and Active from fields are available only when reward activity (availability) is limited

Note

Status of the Reward campaign (Active/Inactive) has higher priority than time boundaries from Active section.

Even if time boundaries from Activity section will be valid, changing Status to Inactive means that reward will not be available to customers.

	If applicable, in Campaign photo section upload reward images that will be visible on the storefront

	To add a photo tap Upload to import main image

	To add more images click Add photo and then upload another photo. Reapeat it for all photos that you want add.

	To remove a photo click remove [image: remove_photo] icon near by particular field (during creation)

	To remove images after creation click bin [image: bin] icon in the photo upper right corner (in edit mode)

All added images will be visible in Campaign photos field after save

[image: Reward photo]

Note

Image size is limited to 2MB. Image dimensions could not be smaller than 600 x 600 px. Allowed file formats: png, gif, jpg.

	When it is done, tap SAVE

Reward Modification

	Updating reward data

	Activate / Deactivate reward campaign

Activate / Deactivate reward campaign

Any reward from the list can be activated and deactivated by Admin user.

To activate / deactivate reward:

	On the Admin sidebar, tap Reward campaigns. Then choose All reward campaign.

You can also deactivate/activate reward from Edit mode

	In the Reward campaign list, find the reward to be deactivated and click Active in the Active column.

The button in the column changes to Inactive and appears as a grey-out.

[image: Active Column]

Warning

When you deactivate reward campaigns, customer will not be able to see it on the storefront and use

	To activate the reward campaign click Inactive in the Active column.

The button in the column changes to Active and appears as a red.

Note

Customer can use only Active reward campaigns

Updating reward data

You can edit all data provided during reward campaign creation process, except the Campaign type.

You can update reward data by selecting its record from All reward campaigns list.

[image: Reward Campaign Edition]

To edit a Reward campaign:

	On the Admin sidebar tap Reward campaigns and then choose All reward campaigns

	In the Reward campaign list find the reward to be edited and click Edit icon [image: edit] in the Action column to open reward in edit mode

	Make any necessary changes to the reward data

	When it is done, tap SAVE

Warning

While editing rewards with coupon codes, in Coupons section you can only remove or change those coupon codes that have not yet been redeemed by the customers.

If coupon code has been assigned to a customer (when they redeemed the reward), it will not be possible to change it.

[image: Message after removing coupon]

All Reward campaigns

The All reward campaigns grid provides information about all rewards within your Loyalty Program with information about type, status, cost in points, limits of use, if and how many times reward has been used by customers and time boundaries of activity.

Moreover, you can also see how many customers could use reward and preview theirs details.

[image: Reward Campaign Menu]
Use the standard controls to sort the list, filter and search rewards by typing in the field under Name column header value you want to find, and apply actions to selected rewards record (modify, preview details).

Pagination controls appear if there are more rewards records than fit on the page, and are used to move from one page to the next.

Field description

	Field

	Description

	Name

	
Name of the reward displayed in views

	Active

	
Reward campaign current status. Option include: Active/Inactive

Customer can redeem only Active reward

It has higher priority than Activity time

	Campaign type

	
Reward type.

Options include:

	Percentage discount code

	Cashback

	Discount code

	Free delivery

	Gift

	Invitation for the event

	Value code

	Custom campaign

To learn more about the rule types, please see
Reward campaigns Types

	Cost in points

	
How many points Customer must spend to redeem reward

	Limit

	
Information about limit the redeem of rewards globally

	Limit per customer

	
Information about limit the redeem of rewards by one customer

	Used by customers

	
Information how many times reward has been redeemed

	Coupons count

	
Information about number of coupons available to redeem

	Active from

	
Day from which reward is active, i.e. visible and available to use for customers

	Active to

	
Day until reward can be redeem.

After that day reward will not be visible for customer and unavailable to use

	Fulfillment tracking
process

	
Information whether reward fulfillment tracking process is enable

Options include: Yes/No

To learn more about the reward fulfillment tracking, please see
Gift fulfillment
tracking process section

	Customers

	
When Show customers is clicked, list of customers who redeemed it will be shown

	Created at

	
Shows date and time of creation of the reward campaign.

	Actions

	
The operations that can be applied to selected reward.

Options include:

	edit reward details

	view reward details

	buy reward campaign for client

Content

	List of customers able to redeem reward

	Reward campaign details preview

	Buy reward campaign for customer

Buy reward campaign for customer

Any active Reward campaign (except Cashback) can be assigned manually by Admin user to selected customer account.

Admin user can create new or use existing reward campaign from All reward campaigns list to “buy” a reward for a customer using his points or just add it for free.

As an admin you can “buy” more than one coupon within one campaign at once. Note, that quantity is limited by Reward campaign limits (defined during creation – Limit & Limit per customer)

To assign a Reward campaign to Customer:

	Tap Reward campaigns on the Admin sidebar and choose All reward campaigns

	In the Reward campaigns list, find the active reward campaign to be bought and click Assign icon [image: assign] in the Action column.

Note

Depending on the selected Campaign type, a window will display different fields to filled in.

Different fields are required for Percentage discount code, than for other types i.e. discount code, free delivery etc.

	When you choose any other than Percentage discount code, in the opened window do the following:

	Provide E-mail or phone number of the customer to whom you want to assign the reward

	Mark Without spending points checkbox to give reward to a customer for free (without using his points).

When unmarked, defined in Reward campaign details points amount (Cost in points) will be deducted from customer Active points pool

	In Quantity field provide number of coupons to be assigned to customer (remember about the reward campaign limits)

	When it is done, tap SAVE

[image: Buy reward campaign for client]

	When you choose Percentage discount code, additional field to assign it with transaction will be displayed instead Quantity. In the opened window do the following:

	Provide E-mail or phone number of the customer to whom you want to assign the reward

	Enter Transaction document number belonging to selected in previous step customer. Value of this transaction will be a base to calculate percentage discount that customer receives.

	When it is done, tap SAVE

[image: Buy Percentage discount code for Client]

	Bought reward campaign appears on Redeemed rewards list.

All campaign categories

The All campaign categories grid allows you to manage reward campaign category to facilitate their identification.

Grid provides information about all categories that can be assigned to particular reward (during it’s creation/edition) with information about status.

Depending on the Translations settings, Basic information can be provided in different language versions (listed in Translations). Information from that section can be displayed on a Client cockpit depending on a chosen from the admin cockpit default language version.

Tip

For example

when default language is English, information are displayed in English, but when we change it to polish as a default language, all basic information will be displayed in polish (if provided).

[image: All Campaign categories]
Use the standard controls to sort the list in Sort order column, filter and search categories by typing in the field under Name column header value you want to find, and apply actions to selected rewards record (modify).

Pagination controls appear if there are more campaign categories records than fit on the page, and are used to move from one page to the next.

Field description

	Field

	Description

	Name

	
Name of the campaign category

	Sort order

	
Column is used to sort campaign category.

Number determine order in which category will be listed after sorting

in ascending (from high to low) and descending (from low to high) order.

	Active

	
Category status. Options include: Active/Inactive

Regardless of the status, each category can be assigned to the reward campaign

	Actions

	
The operations that can be applied to selected category.

Options include:

	edit category details

Content

	Creating new campaign category

List of customers able to redeem reward

You can simply view not only the number but also the list of customers with details who could redeem reward.

To display the list of customers:

	On the Admin sidebar, tap Reward campaigns. Then choose All reward campaigns

	In the Reward campaigns list, find the reward you want to see customers list and click Show customers in the Customers column.

After clicking, the list of customers will be opened, filtered according to the selected reward.

[image: List of Customers in Reward Campaign]
Use the standard controls to apply actions to selected customers (edit and view profile details).

Pagination controls appear if there are more customer records than fit on the page, and are used to move from one page to the next.

Reward Campaigns Menu

	Introduction

	All Reward campaigns

	Buy reward campaign for customer

	Redeemed rewards

	All campaign categories

Introduction

Customers can redeem points toward various rewards, based on the cost in points of each that you establish during reward creation.

When customer reaches the defined amount of points, points can be spent for a reward. Redeemed reward appears automatically in Redeemed rewards menu.

During creation you can specify for each reward e.g.:

	How many points customer need to spent to get reward

	How many times rewards can be used by one customer

	How many times reward can be used during all campaign

	To which customer reward will be visible and ready to use

	Time boundaries when reward will be active

	Reward value & taxes information

	Category to which reward belongs

	Reward brand information

[image: Reward Campaign Menu]

Note

For example

a coupon code can be created for a specific customer group, or for anyone who makes a purchase over a certain amount (segment).

To apply the coupon to a purchase, customer can enter the coupon code in your online store, or possibly at the cash register of your offline store.

To display the Reward campaigns menu:

Tap Reward campaigns on the Admin sidebar and choose All reward campaigns

Menu options:

All reward campaigns

Lists all rewards within your loyalty program, with additional information about its type, activity, limits, points costs and customers who can redeem each reward

[image: Reward Campaign Menu]

Add reward campaigns

Lists all data that need to be filled out to add new reward to your Loyalty Program

[image: Add reward campaign]

Redeemed rewards

Lists all redeemed rewards with additional information who and when redeemed reward and it’s status – delivered or used

[image: Redeemed rewards]

All campaign categories

Lists all reward campaign categories within your loyalty program, with additional information about its status and sort order

[image: All campaign categories]

Creating new campaign category

You can create unlimited amount of category that can be assign to the reward campaign.

[image: Add Campaign Category]

To add new campaign category:

	On the Admin sidebar, tap Reward campaigns. Then choose All campaign categories

	Click Add campaign category at the top of the page

[image: Category add Button]

	In the first Basic information section, related to the default language version do the following:

	Enter the Name of the category

	If applicable, fulfill the same fields in other language version e.g. polish as on a screen below

[image: General basic information]

	In Basic information details section provide as follow:

	In Sort order field enter the number, determine order in which category will be listed after sorting

	To activate the rule, in Active field select “Active” from the dropdown list

[image: Detail Basic information]

	When complete, tap SAVE

Redeemed rewards

Redeemed reward is an instance of reward that Customer has bought with Points or earned for performing specified action.

There is possibility to get:

	virtual reward - as a Discount or Value Code, free delivery

	physical reward - which will be send to Customer, e.g. printed coupon, gift, etc.

	cashback

Note

When “buying” reward campaign using customer points, points that are expiring soon are used first

Not enough points from Customer perspective

In the Client Cockpit, if Customer does not have enough points to redeem reward then Redeem reward button will be disabled (greyed out).

When mouse hover over disabled button then tooltip will show “You must have <<reward cost - customer active points>> more points to get reward”

Redeemed reward from Admin perspective

Redeemed reward management could be performed only from Administrator Cockpit by user who has Admin privileges.

Redeemed rewards list grid provide an information about which customer and when redeemed and used given reward.

Moreover, you can check whether reward is Delivered (customer choose reward and spent points but he has not used it yet) or mark as Used (customer used coupon code during purchase, gift was sent to customer etc.)

Note

You can mark selected reward/coupon record as Used or unmark if is not used only if it’s status is Active

When coupon status changed to Expired none of the above operations is possible.

By default all Used rewards receive the Delivery status Ordered. In the case of a Used Gift reward, additionally you can manage the status of its delivery to the customer. More in Gift fulfillment tracking process section.

You can also see customer address on which reward will be sent by clicking View [image: view] icon in the Action column. This option is available for every reward types.

[image: Redeemed Rewards]
Use the standard controls to filter the list by Redeem date and time and Usage date and time. You can also get a list of reward that are Delivered or Used by filter Unused/used column. By default Redeemed rewards grid show both – delivered and used rewards.

Moreover, you can sort and filter the list by redeemed rewards Delivery status.

Pagination controls appear if there are more redeemed rewards records than fit on the page, and are used to move from one page to the next.

To see all Redeemed rewards:

Tap Reward campaigns on the Admin sidebar and choose Redeemed rewards

Field description

	Field

	Description

	Redeem date and time

	
Date when reward was redeemed

	Usage date and time

	
Date when reward was used

	Cost in points

	
Number of points that customer spent for this reward

(define during reward creation in Cost in points field)

	Tax value

	
monetary value of tax for reward

	Customer e-mail

	
Email address of customer who redeemed reward.

E-mail address is used as an identification factor to verify

which customer choose particular reward.

	Phone

	
The customer’s phone number.

Can be used also as an identification factor.

	Reward

	
Name of the reward with coupon code number in round brackets

	Type

	
Reward type.

Options include:

	Percentage discount code

	Cashback

	Discount code

	Free delivery

	Gift

	Invitation for the event

	Value code

	Custom campaign

To learn more about the rule types, please see
Reward campaigns Types

	Customer’s first name

	
First name of customer who redeemed reward

	Customer’s surname

	
Last name of customer who redeemed reward

	Customer active points
amount

	
Amount of customer active points after he redeemed reward.

From customer Active points pool, redeemed reward Cost in points value is deducted

	Delivery status

	
Redeemed reward shipping process statuses

For every Used reward type except Gift only status is Ordered

For Gift reward following statuses are possible:

	Ordered

	Shipped

	Delivered

	Canceled

To learn more about the statuses, please see
Gift fulfillment
tracking process section

	Cashback status

	
Redeemed cashback rewards statuses

Rewards of types other than Cashback have a dash in this field.

For Cashback reward with PayTM provider, the following statuses are possible:

	0: INIT: INIT

	1: SUCCESS: SUCCESS

	2: (failure code): (failure message)

	3: (code): (reason for pending)

	Unused / Used

	
Redeemed reward statuses.

Options include:

	Delivered: empty checkbox

	Used: marked checkbox

To learn how to select reward as a used, see
Redeemed rewards
in profile detail section

	Actions

	
The operations that can be applied to selected redeemed reward record.

Options include:

	view customer address details used to reward delivery

Content

	Download redeemed rewards report

Reward campaign details preview

You can see details of each reward campaign directly from All reward campaigns menu. Campaign details include all data provided during creation process

To view reward detail information:

	On the Admin sidebar, tap Reward campaigns. Then choose All reward campaigns

	In the Reward campaigns list, find the reward you want to be preview and click View icon [image: view] in the Action column to open the reward in view mode.

	If applicable, you can simply go to edit mode to change previewed reward data by clicking Edit icon [image: edit] in the upper right corner

[image: Campaign Details Preview]

Note

Depending on the selected Campaign type, a window will display different fields to preview.

Download redeemed rewards report

There is also possibility to download a report of redeemed rewards into a CSV file.

To download the redeemed reward report:

	Tap Reward campaigns on the Admin sidebar and choose All reward campaigns

	Click Export to CSV at the top of the page

[image: Redeemed rewards export Button]

	In the Redeemed rewards report dialog, do the following:

	In Date from field choose start date from which redeemed rewards data will be included in a report (base on Date and time)

	In Date to field choose end date until which redeemed rewards data will be included (based on Date and time)

[image: Redeemed rewards report]

	When it is done, tap Download report

After clicking, the list of redeemed rewards will be downloaded in .CSV format

Segments

In this section of the guide you will become familiar with the customer segmentation feature, and learn to configure customer segments according to your preference.

You will also learn how to create and assigned customers to segments, that can be referenced in rewards, earning rules, levels etc.

Segments menu

	Introduction

	All segments

	Customers assigned to segment list

	Download the customers list

Segments creation

You can create unlimited amount customizable customers segments for your loyalty program based on various criteria’s.

	Segment parts types

Segments

	Anniversary

	Average transaction value

	Bought in specific POS

	Bought products with labels

	Bought specific brands

	Bought specific SKU

	Custom customer list

	Customers who has such labels

	Customers have such labels values

	Last purchase was n days ago

	Purchase period

	Transaction count

	Transaction percent in POS

	Transaction value

Segments modification

	Updating segments data

	Activate / Deactivate segment

	Remove segment

Anniversary

Segment of customers who have registration or birthday anniversary in specify number of days .

For example, you can create segment of customers who have birthday within 14 days from today or register today.

To create only Anniversary type segment:

	Tap Segments on the Admin sidebar and choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic informations section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explains purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Informations Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Anniversary segment.

During creation, you need to specify whether to include dates of birth or registration dates and number of days before anniversary occurs.

	in Type field choose anniversary type. Options include:

	Birthday

	Registration

	provide number of days before anniversary occurs

[image: anniversary]

Tip

For example

if Days is equal to 0 then all customers, who e.g. have birthday today or register account today or at the same date like today but in previous years, will be assigned to this segment.

If Days is equal to 5 then all customers, who e.g. have birthday within 5 days (including today) or registered account within 5 days in previous years (including today), will be assigned to the segment.

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customer who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customer who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When it is done, tap SAVE

Average transaction value

Segment of customers whose average transaction value is within the defined range.

For example, you can create segment of customers whose all transactions average value is between 150 $ - 300 $

To create only Average transaction value type segment:

	Tap Segments on the Admin sidebar and choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic informations section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explain purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Informations Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Average transaction value segment.

During creation, you need to specify Minimum and Maximum value to define the range in which the average transaction amount must be found.

	in Min value field provide the minimum value of the average transaction amount that customer must fulfil to be assigned to this segment

	in Max value field provide the maximum value of the average transaction amount that let customer to be assigned to this segment

[image: Average transaction value]

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customer who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customer who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When it is done, tap SAVE

Bought specific brands

Segment of customers who bought product or products of a given brand.

For example, you can create segment of customers who bought products of specific brand “XYZ” or “ABC”

To create only Bought specific brands type segment:

	Tap Segments on the Admin sidebar and choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic informations section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explain purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Informations Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Bought specific brands segment.

During creation, you need to specify one or more Brands that will be included.

[image: Bought Brands Type]

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customer who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customer who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When it is done, tap SAVE

Custom customer list

Segment of customers chose by admin user on demand.

For example, admin can create segment of his “favoruite” customers

To create only Custom customer list type segment:

	Tap Segments on the Admin sidebar and choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic informations section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explain purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Informations Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Custom customer list segment.

During creation, you need to specify email address or phone number of every customer that you want to add.

[image: Custom customer list]

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customer who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customer who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When it is done, tap SAVE

Customers who has such labels

Segment of customers whose label value on is one of the list. Labels are key-value pairs that you can attach to a customer during customer account creation

For example, you can create segment of customers belongs to Customer type group

To create only Customers who has such labels type segment:

	Tap Segments on the Admin sidebar and choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic informations section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explain purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Informations Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Customers who have such labels segment.

Enter your label Key to add a customer label that will be included. To apply additional labels, click Add label

[image: Customers Labels Type]

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customer who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customer who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When it is done, tap SAVE

Customers have such labels values

Segment of customers whose label value on is one of the list. Labels are key-value pairs that you can attach to a customer during customer account creation

For example, you can create segment of wholesale or individual customers (Key – Customer type, Value – wholesale or Key – Customer type, Value – individual)

To create only Customers have such labels values type segment:

	Tap Segments on the Admin sidebar and choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic Information section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explain purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Information Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Customers have such labels values segment.

Each of list element has two values – Key, which is a label name, and Value, which is a label value. Both fields need to be filled out.

Enter your key and value to add a customer label that will be included. To apply additional labels, click Add label

[image: Customer Labels Value Type]

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customer who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customer who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When it is done, tap SAVE

Segments creation

Last purchase was n days ago

Segment of customers who have made their last purchase n-days ago.

For example, you can create segment of customers who made purchase within last week or last month

To create only Last purchase was n days ago type segment:

	Tap Segments on the Admin sidebar and choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic informations section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explain purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Informations Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Last purchase was n days ago segment.

During creation, you need to specify number of Days back, that will be included.

[image: Last Purchase Type]

Tip

For example

if Days is equal to 7 then all customers, who made their last purchase within 7 days back from today will be assigned to segment

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customer who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customer who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When it is done, tap SAVE

Bought in specific POS

Segment of customers who have made purchase (at least one) in selected POS.

For example, you can create segment of customers who made purchase in your online store or one of the offline stores

To create only Bought in specific POS type segment:

	Tap Segments on the Admin sidebar and choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic informations section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explain purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Informations Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Bought in specific POS segment.

During creation, you need to specify list of one or more stores (POS) that will be included. You create the list by drag the selected POS name from left column to the right one.

First column lists all available POS within your Loyalty Program. Second column lists all selected POS which transactions will be included.

To choose POS drag the POS name to the second column

[image: Bought in POS Type]

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customer who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customer who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When it is done, tap SAVE

Bought products with labels

Segment of customers who bought products where label on product is one of the list. Labels are key-value pairs that you can attach to a products.

For example, you can create segment of customers who bought trousers (key) - jeans (value) or leggins (value)

To create only Bought products with labels type segment:

	On the Admin sidebar, tap Segments. Then, choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic informations section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explains purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Informations Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Bought products with labels segment.

Each of list element has two values – Key, which is a label name, and Value, which is a label value. Both fields need to be filled out.

Enter your key and value to add a product label. To apply additional labels, click Add label

[image: Bought Labels Type]

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customer who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customer who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When it is done, tap SAVE

Purchase period

Segment of customers who made purchase (at least one) between the specified date range.

For example, you can create segment of customers who made purchase in january or within first 2 weeks of February etc.

To create only Purchase period type segment:

	Tap Segments on the Admin sidebar and choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic informations section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explain purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Informations Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Purchase period segment.

During creation, you need to specify the start and end date that will create a time boundaries from which purchases will be included.

[image: Purchase Period Type]

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customers who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customers who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When it is done, tap SAVE

Segment parts types

The assignment process is carried out by the application based on defined rules. Customers, who meet all criteria, will be assigned to the segment.

The criteria consists of conditions that can be combined through AND (conjuction of sets) and OR (disjunction of sets) logical operators.

During creation of Segment you must specify Segment parts type, describing conditions for assigning customer. Every type has its own required fields that must be filled to specified condition.

[image: Segment Parts Types]

Segments types

Open Loyalty offers following standard types:

	
	Anniversary

	Customers who have registration/birthday anniversary in specify number of days

More information about segment creation here

	
	Average transaction amount

	Customers whose average transaction value is between the limits

More information about segment creation here

	
	Bought in specific POS

	Customers who made purchase in selected POS

More information about segment creation here

	
	Bought products with labels

	Customers who bought products where label on product is one of the list

More information about segment creation here

	
	Bought specific brands

	Customers who bought products of a given brand

More information about segment creation here

	
	Bought specific SKU

	Customers who bought specific products (on the basis of selected SKU)

More information about segment creation here

	
	Custom customer list

	Any Customers selected by admin

More information about segment creation here

	
	Customer who has such labels

	Customers who made purchase in selected POS

More information about segment creation here

	
	Customers who has such labels value

	Customers whose labels value on is one of the list

More information about segment creation here

	
	Last purchase was n days ago

	Customers who have made their last purchase n-days ago

More information about segment creation here

	
	Purchase period

	Customers who made purchase (at least one) between the specified days

More information about segment creation here

	
	Transaction count

	Customers whose number of purchases is within the defined range

More information about segment creation here

	
	Transaction percent in POS

	Customers whose number of purchases in a specified POS is within defined percent amount

More information about segment creation here

	
	Transaction value

	Customers whose overall amount of purchases is between the limits

More information about segment creation here

Bought specific SKU

Segment of customers who bought specific products (on the basis of selected SKU).

For example, you can create segment of customers who bought products of specific SKU “123ABC” or “X1Y8Z0”

Tip

SKUs can contain spaces or any other special characters, but remember that “SKU 123.” is not equal to “sku 123.”

To create only Bought specific SKU type segment:

	Tap Segments on the Admin sidebar and choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic informations section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explain purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Informations Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Bought specific SKU segment.

During creation, you need to specify one or more SKUs that will be included.

[image: Bought SKUs Type]

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customer who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customer who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When it is done, tap SAVE

Transaction count

Segment of customers whose number of purchases is within the defined range.

For example, you can create segment of customers whose number of purchases is between 10 - 20 etc.

To create only Transaction count type segment:

	Tap Segments on the Admin sidebar and choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic informations section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explain purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Informations Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Transaction count segment.

During creation, you need to specify Minimum and Maximum number to define the range in which the number of transactions must be found.

[image: Transaction Number Type]

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customer who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customer who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When it is done, tap SAVE

Transaction percent in POS

Segment of customers whose number of purchases in a specified POS is within defined percent amount.

For example, you can create a segment of customers whose 20% of all transactions are transactions in a given POS etc.

To create only Transaction percent in POS type segment:

	Tap Segments on the Admin sidebar and choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic informations section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explain purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Informations Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Transaction percent in POS segment.

During creation, you must specify (select name from a dropdown) one POS (store) which transaction will be included and transaction percentage in Percent field to be analyzed within that POS.

[image: Transaction Percent Type]

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customers who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customers who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When it is done, tap SAVE

Transaction value

Segment of customers whose overall amount of purchases is between the limits.

For example, you can create segment of customers whose value of purchases is between 100 $ - 200 $ etc.

To create only Transaction value type segment:

	On the Admin sidebar, tap Segments. Then, choose Add segment. You can also add rule directly from All segments list by clicking Add segment at the top of the page

[image: Add Segment Options]

	In Basic informations section, do the following:

	Enter a unique segment Name to identify the customer segment when working in the Admin

	Enter a brief Description that explain purpose of the segment for internal reference

	To activate the customer segment, in Active field select “Active” from the dropdown list

[image: Basic Informations Section]

	In Segment Parts set the conditions that must be met to assign the customer to only Transaction value segment.

During creation, you need to specify Minimum and Maximum value to define the range in which the value of all transactions must be found.

[image: Transaction Value Type]

Note

One Segment consists of one or more conditions (types). Conditions can be combined through AND and OR logical operators.

	AND Condition

is used to perform a logical conjuction on two conditions. Both conditions linked with this operator must be true.

For example, you can create segment with a list of customers who made purchase in specific POS and bought specific SKU. The list will contain customer who met both, 1st and 2nd condition.

	OR Condition

is used to perform a logical disjunction on two conditions. At least one of conditions linked with this operator must be true.

For example you can create segment with a list of customers who made purchase in specific POS or bought specific SKU. List will contain customer who met only the 1st condition, who met only the 2nd condition and met both conditions.

To learn more about conditions type, see Segment parts types

	You can simply remove condition by clicking bin icon [image: bin] in a particular row

	When complete, tap SAVE

Segments Modification

	Updating segments data

	Activate / Deactivate segment

	Remove segment

Activate / Deactivate segment

Any Segments from the list can be activated and deactivated by Admin user.

To activate / deactivate segment:

	On the Admin sidebar, tap Segments. Then, choose All segments.

You can also deactivate/activate segment from Edit mode

	In the Segments list, find the segment to be deactivated and click Active in the Active column.

The button in the column changes to Inactive and appears as a grey-out.

[image: Active Column]

Warning

When you deactivate segments, customers accounts assigned to this segment will not be refreshed (i.e. information about assignment will be still displayed from admin) but any other customer will not be associated to it.

	To activate the segment click Inactive in the Active column.

The button in the column changes to Active and appears as a red.

Note

Customer can be assigned only to Active segments

Remove segment

You can also delete segment from the Admin.

To delete a segment:

	On the Admin sidebar, tap Segments. Then choose All segments

	In the Segments list, find the record to be deleted and click Remove icon [image: remove] in the Action column to delete the segment.

	System displays a message asked you to confirm the action. To confirm tap Yes

[image: Removing Segment Action]

Updating segments data

You can edit all data provided during segment creation process. You can update segment data by selecting its record from All segments list.

[image: Segment Edition]

To edit a Segment:

	On the Admin sidebar tap Segments. Then choose All segments

	In the Segments list find the record to be edited and click Edit icon [image: edit] in the Action column to open segment in edit mode

	Make any necessary changes to the segment data

	When it is done, tap SAVE

All segments

The All segments grid provides information about all segments within your Loyalty Program with information about assigned customers.

Moreover, you can also export the list of targeted customers.

[image: All Segments]
Use the standard controls to sort the list and apply actions to selected segments (modify, remove, active/inactive, export customer list).

Pagination controls appear if there are more segments records than fit on the page, and are used to move from one page to the next.

Field description

	Field

	Description

	Name

	
Name of the segment

	Created at

	
The date when segment was created

	Description

	
Brief description of the segment

	Customers

	
Show customers account number assigned to this segment.

After Show click, list of these customer details will be shown

	Average transaction
amount

	
Average transactions amount of the customers in this segment.

	Average transactions

	
Average number of transactions of customers in this segment.

	Average CLV

	
Average CLV of customers in this segment.

	Active

	
Segment current status. Option include: Active/Inactive

Customer could be assigned only to Active segment.

	Actions

	
The operations that can be applied to selected segments.

Options include:

	edit segment data

	download list of customers (with details) assigned to this segment

	delete segment

Download the customers list

There is also possibility to download a list of customers to a CSV file.

To download the list of customers assigned to a segment :

	Tap Segments on the Admin sidebar and choose All segments

	In the segments list, find the segment that you want to download customers list and click Download icon [image: download] in the Action column

After clicking, the list of customers will be downloaded in .CSV format.

Customers assigned to segment list

You can simply view not only the number but also the list of customers with details assigned to particular segment.

To display the list of customers:

	Tap Segments on the Admin sidebar and choose All segments

	In the segments list, find the segment that you want to see customers list and click Show in the Customers column.

After clicking, the list of customers will be opened, filtered according to the assigned segment.

[image: List of Customers in Big Spenders Segment]
Use the standard controls to sort the list, filter and search customer by typing in the field under column header value you want to find, and apply actions to selected customers (edit and view detail).

Pagination controls appear if there are more customer records than fit on the page, and are used to move from one page to the next.

Segments Menu

	Introduction

	All segments

	Customers assigned to segment list

	Download the customers list

Introduction

Customer segments allow you to e.g. dynamically count points, levels and display rewards to specific customers, based on properties such as system events, transactions history, purchasing activity, and so on.

Customer can be assigned to several segments

You can optimize marketing initiatives based on targeted segments. You can also preview and export the list of targeted customers.

Because customer segment information is constantly refreshed, customers can become associated and disassociated from a segment as they shop in your store.

[image: Segments]

To display the Segments menu:

Tap Segments on the Admin sidebar and choose All segments

Menu options:

All segments

Lists all customer segments within your loyalty program with brief description of each and additional information regarding assigned customers

There is also possibility to preview and export the list of targeted customers

[image: Segments]

Add segment

Lists all data that need to be filled out to create new segment

[image: Add segment]

Transactions

In this section of the guide, you’ll learn how to manage all aspects of the transaction, including matching transaction with customer and better understanding of terms and transaction process

Transactions menu

	Introduction

	All transactions

	Transaction details

	Transaction labels

	Returns

Transactions matching

	Match transaction with customer

Return mechanism

	Return transactions

	Return “Voucher

Transactions import

	Importing transactions from a file

	XML file structure

	Matching transactions with customers from a XML file

	XML file structure

Match transaction with customer

Transactions come usually from your store system with information about customer related with. However, you can link transaction with Customer Account directly from the Admin in Open Loyalty, which is useful when you send to Open Loyalty only transactions.

Depending on Matching transaction with customer identification factors priority (set up in Configuration) customer email, phone number or/and loyalty card number can be used. To remain about identification factors please see Configuration

[image: Match Customer Account with Transaction]

To match transaction with customer:

	Tap Transactions on the Admin sidebar and choose All transactions

	Tap Match with customer at the top of the page. Then, do the following:

	Enter E-mail or phone to find customer, which you want to associate with the transaction

	Enter transaction Document number (transaction ID), which you want to associate with the customer

	In the both fields:

	to find a close match, enter few letters/signs of what you want to find

	to find an exact match, enter the exact word/number you want to find

	When it is done, tap SAVE

[image: Matching Customer List]

Return “Voucher” for a Customer

Note

this feature is related ONLY with Percentage discount code campaign type

Percentage discount code is a value discount, which customer received after purchase based on registered order amount.
Discount will be equal to percentage value of registered order amount - percentage value is provided in Transaction percentage value field during reward creation.

For example

If Customer total amount of transaction is 100 EUR, and Transaction percentage value is set to 10 (i.e. 10% of registered transaction total amount) they will receive 10 EUR discount for next purchase.

Received value code can be used for next purchase to reduce the value of the order. But what happens if the customer decides to return the transaction to which he used the value code?

[image: Transactions with Voucher]
What will happen to customer’s points and indicators of profitability is described in the Return transactions.

Used value code will be returned to Customer for next purchase, but its value will depend on the return transaction value in propotion to the registered order amount before reduction. Returned value code will have the same expiration date as the one used

For better understanding please see Examples below.

1. Full refund

100% return - the full value of the coupon is returned

Customer for his previous order received value code worth 100 EUR, which he used for his next order to reduce it’s value - Total order amount before reduction was 1000 EUR

After few days, for some reason he decided to make full refund of transaction to which he used value code. After return transaction registration, customer:

	received new value code worth the same as used within transaction i.e. 100 EUR

	returned coupon expiration date is the same as used within transaction

	returned coupon status is Delivered

	the old coupon status remain Used (marked checkbox)

[image: Full refund voucher]

2. Partial refund

partial return - value of returned coupon is in propotion to the registered order amount before reduction

Customer for his previous order received value code worth 100 EUR, which he used for his next order to reduce it’s value - Total order amount before reduction was 1000 EUR

After few days, for some reason he decided to make a return transaction of 500 EUR. Returned transaction is that one to which he used value code. 500 EUR is a half value of total order amount before reduction, so exactly in the same proportion will be calculated value of coupon that will be returned.

After return transaction registration, customer:

	received new value code worth 50% of the coupon previosly used within transaction i.e. 50 EUR (50% of 100 EUR)

	returned coupon expiration date is the same as used within transaction

	returned coupon status is Delivered

	the old coupon status remains Used (marked checkbox)

[image: Partial refund voucher]

Transactions Menu

	Importing transactions from a file

	XML file structure

	Matching transactions with customers from a XML file

	XML file structure

Importing transactions from a file

If you have a transaction that you want to add within your Loyalty Program, you can enter it into a transactions XML file and then import it in your Open Loyalty Admin.

[image: Import Transactions]
Imported XML file will create a transaction for each record in the file.

To import a transaction from a file:

	On the Admin sidebar, tap Transactions. Then choose All transactions

	Click Import at the top of the page, next to Match with customer

[image: Transactions Import Button]

	In the Import transactions dialog click Upload and then choose your customer XML file

	When the file is selected, click Import

[image: Import Transactions]
The transactions records which you’ve added to the XML file will appear in the All transactions list in your Open Loyalty admin.

Matching transactions with customers from a XML file

If you have the transactions, which aren’t linked with the customers accounts, you can match a lot of transactions with the customers through importing a XML file in your Open Loyalty Admin.

[image: Match Customer With Transaction]
Imported XML file will create a transactions for each record in the file.

To import a transaction from a file:

	On the Admin sidebar, tap Transactions. Then, choose All transactions

	Click Import match with customer at the top of the page, next to Match with customer

[image: Transactions Import Button]

	In the Match customer with transaction dialog, click Upload and then choose your customer XML file

	When file selected, click Import

[image: Match Customer With Transaction]
The transactions records which you’ve added to the XML file will appear on the customer profile page in Transactions overlap in your Open Loyalty Admin.

XML file structure

Tip

If you don’t have or don’t want to import all this data, remove all code lines/section instead leave it blank.

For example, if you don’t want to include posID remove all lines from the code - don’t leave it with no value as below

Remember that some of them are required, so if you remove it Import will not be possible

WRONG FORMATTING

<posId> </posId>
<posId></posId>

Tip

If you don’t know POS ID you can include only POS Identifier. POS Identifier is provided during POS creation and accessible from POS list

Example of completed Transaction XML file structure below

<?xml version="1.0" encoding="UTF-8"?>
<transactions>
 <transaction>
 <documentNumber>R123/11</documentNumber>
 <purchasePlace>Wroclaw</purchasePlace>
 <purchaseDate>2018-08-15T15:52:01+00:00</purchaseDate>
 <documentType>sell</documentType>
 <posId>00000000-0000-474c-1111-b0dd880c07e2</posId>
 <posIdentifier>pos1</posIdentifier>
 <customer>
 <name>John Doe</name>
 <email> jdoe@example.com</email>
 <nip>123-12-22-123</nip>
 <phone>48231231232</phone>
 <loyaltyCardNumber>12982332</loyaltyCardNumber>
 <address>
 <street> Main road</street>
 <address1>123</address1>
 <city>Wroclaw</city>
 <country>PL</country>
 <province>Dolnoslaskie</province>
 <postal>45-123</postal>
 </address>
 </customer>
 <items>
 <item>
 <sku>
 <code>SKU1</code>
 </sku>
 <name>Item 1</name>
 <quantity>1</quantity>
 <grossValue>100</grossValue>
 <category>category1</category>
 <maker>maker</maker>
 <labels>
 <label>
 <key>key1</key>
 <value>value1</value>
 </label>
 </labels>
 </item>
 <item>
 <sku>
 <code>SKU2</code>
 </sku>
 <name>Item 2</name>
 <quantity>3</quantity>
 <grossValue>300</grossValue>
 <category>category2</category>
 <maker>maker</maker>
 <labels>
 <label>
 <key>key3</key>
 <value>value3</value>
 </label>
 </labels>
 </item>
 </items>
 </transaction>

XML file structure

Tip

If you don’t have or don’t want to import all this data, remove all code lines/section instead leave it blank.

For example, if you don’t want to include phone remove all line from the code - don’t leave it with no value as below

Remember that some of them are required, so if you remove it Import will not be possible

WRONG FORMATTING

<phone> </phone>
<phone></phone>

Example of completed mass matching transaction XML file structure below

<?xml version="1.0" encoding="UTF-8"?>
<matchCustomers>
 <matchCustomer>
 <customerId>00000000-0000-474c-b092-b0dd880c07e33</customerId>
 <customerEmail>marek@example.com</customerEmail>
 <customerPhoneNumber>+48888888888</customerPhoneNumber>
 <customerLoyaltyCardNumber>936592735</customerLoyaltyCardNumber>
 <transactionDocumentNumber>t111</transactionDocumentNumber>
 </matchCustomer>
 <matchCustomer>
 <customerId>00000000-0000-474c-b092-b0dd880c07e44</customerId>
 <customerEmail>tomek@example.com</customerEmail>
 <customerPhoneNumber>+48888888889</customerPhoneNumber>
 <customerLoyaltyCardNumber>936592739</customerLoyaltyCardNumber>
 <transactionDocumentNumber>t190</transactionDocumentNumber>
 </matchCustomer>
</matchCustomers>

All transactions

The All transactions lists gives you information about type and value of all payment activity referred to customer.

Moreover, list contains detail information about store and date when transaction was made, transaction internal number and allows to preview transaction and purchased items detail.

[image: Transactions List]
Use the standard controls to sort the list by Purchase date, filter and search transfers by typing in the field under column header value you want to find, and apply action (preview) to selected transaction records.

Pagination controls appear if there are more transaction records than fit on the page, and are used to move from one page to the next.

Field description

	Field

	Description

	Document number

	
Unique transaction ID from your store internal system (e.g. e-commerce)

	Loyalty card number

	
Number of customer loyalty card related to the transaction (If transaction is
linked with customer account)

	E-mail

	
Email address of customer related to the transaction

	Phone

	
Phone number of customer related to the transaction

	Document type

	
Transaction type:

	sell - customer buy products

	return - customer return bought products

	Purchase date

	
Valid date of transaction

	POS

	
Offline or online store where transaction was made

	Amount

	
The amount of the transaction

	Actions

	
The operations that can be applied to selected transaction record.

Options include:

	add/edit transaction labels

	view transaction details

Transactions Menu

	Introduction

	All transactions

	Transaction details

	Transaction labels

	Returns

Introduction

The Transactions grid lists all (system and imported) payment activity that has taken place between your store system and customers, and provides access to more detailed information about purchased items and transaction itself.

[image: Transactions]

To display the Transactions menu:

Tap Transactions on the Admin sidebar and choose All transactions

Returns

If for any reason the customer returns the purchased products and claims a refund a Return transaction is created. Customer can request a return from both, online and offline stores and both, partial or full refund.

Typically, customer contacts the merchant to request a refund. If merchant authorizes the return and agree for refund, a unique document number of related sell transaction is required to identify the returned products and sell transaction, that caused the points earned.

Note

Open Loyalty prevent from:

	registering a return transaction for non-existing sell transaction

	making a return transaction which is not assigned to the same customer as sell transaction (which is returning).

The All transactions menu lists all – return and sell transactions. To see only returns, you have to filter the list.

To display Return transactions:

	On the Admin sidebar, tap Transactions. Then, choose All transactions

	In the field under Document type column header, click on the arrow

	To see only returns, choose Return from dropdown list

[image: Return and Sell Transactions Filter]
When Returns are enable (see Configuration section), if the customer made a Return, in addition to subtracting the transaction value from the total value of transactions assigned to Customer, the number of earned points assigned to a given sell transaction is also reversed.

The reversed points will be listed in All points transfers menu with Type spending.

[image: Points Transfer as a Result of Return Transaction]
After the return, points are subtracted from the pool of Active points, according to the number of points earned within sell transaction and in proportion to the amount of transaction.

Note

Points are not reversed according to points earned for bought specific products but in proportion to the all transaction amount (including all bought products)

For better understanding please see Example below

Example of customer points and profitability factors behavior after return

Your customer transaction value is 40 € and includes following products:

	Product A – 10 €

	Product B – 10 €

	Product C – 20 €

For following transaction and purchased of these products your customer has earned the value of points as below:

	Product A – 10 points (for bought specific product)

	Product B – 20 points (for bought specific product)

	Product C – 0 points

	40 points for total transaction value (1€ spend = 1 point earned)

So in total customer spent 40 € and earned 70 points.

Points were added to his Active points pool, and transaction value to total amount of his registered transaction value (CLV attribute).

For some reason, he decided to return Product C, which costs 20 €, which is a half of the total transaction value.

And exactly in the same proportion will be calculated the value of points that will be subtracted. For this transaction he earned 70 points, so half of them – 35 points will be subtracted from the Active points pool.

Note

Note, that the transaction value also affects to the Levels and Segments, which criteria are based on this value. Customer can return to previous level or not be included in a given segment when transaction, which caused this promotion, will be returned

For more information please see Levels and Segments chapters.

Transaction details

Click View icon [image: view] in the Action column to open the transaction details – customer detail information and purchased items

[image: Transaction Record Preview]

Field description

	Field

	Description

	Customer name

	
First and last name of customer related to the transaction

	Phone

	
Phone number of customer related to the transaction

	Email

	
Email address of customer related to the transaction

	Loyalty card number

	
Number of customer loyalty card related to the transaction

(If transaction is linked with customer account)

	City

	
The city where the customer resides at this address

	State

	
The state or province of the customer at this address

	Street

	
The street address of the customer

	Building name

	
The name/number of a building or property where the customer resides

	Postal code

	
The postal code of the customer at this address

	Country

	
The country where customer resides at this address

	Purchase date

	
Valid date of transaction

	Document number

	
Unique transaction ID from your store internal system (e.g. e-commerce)

	Points earned

	
How many points Customer earned/lose for this transaction (order).

Transaction with the type “Sell” adds points, and “Return” subtracts

	POS name

	
Offline or online store where transaction was made

	Document type

	
Transaction type:

	sell - customer buy products

	return - customer return bought products

	Labels

	
Assign transaction labels

	ITEM DETAILS

	Name

	Bought product name

	Quantity

	Bought product quantity

	SKU

	Bought product SKU

	Category

	Bought product category

	Gross value

	Gross value of bought product

	Labels

	Bought product label, if assigned

	Brand

	Bought product brand, if assigned

	SUM

	Total amount of bought products within one transaction

Transaction labels

As an administrator you can add a label refer to transaction during creation or after creating a transaction in the system. Transaction labels are intended to be used only for the informational purpose. Transaction doesn’t have to be matched with customer to add a label.

Customer from Client cockpit can also add or edit transaction labels but only this related with transaction matched with him. In that case administrator need to match transaction with a customer from Admin panel.

Click Edit labels icon [image: edit2] in the Action column to open the transaction labels editor.

[image: Transaction labels editor]
To create Label, tap Add Label and do the following:

	type label Key, which is a label name

	type label Value

For example: Key – Special event, Value – Birthday

Repeat the process for all labels you want to use in your Loyalty Program.

Note

Labels can be added to during transaction creation and subsequently added and modified at any time

 _images/customer_transfer.png
Transactions Points transfers ~ Available rewards ~ Redeemed rewards

Issuer state Type Value Comment Created at 1 Pointswill belocked until I Expiresat 1 Actions
system active adding 100 Event - Account Created - 100 20200130 10:23 - 20200220 23:59
admin active blocked 20 string 20200130 11:37 - 20200130 11:37
system active spending 600 20200130 10:24 - 20200130 10:24
system active adding 300 General spending rule - 1 20200130 10:24 - 20200220 23:59
system active adding 1200 General spending rule -1 20200130 10:24 - 20200220 23:59

ALL POINTS TRANSFER DD NEW POINTS TRANSFER

_images/customer_unlink.png
List of customers

First
name.

Last name

Marek

1

Phone

Not set

marekkowalski@example.com

1
Gender! Birthdate Created at
Not 20200130
disclosed 1023

av 1

900.00 EUR

Avo

450,00
EUR

1

Orders!

Days

from 1 current level ¢
last

order

o LevELGOLD

store.

STORECODEEUR

o

Yes

Actions

_images/customer_special.png
Special rewards

Name Reward code Reward value Active Startat Endat Created at
Mother's Day 2016 89011 02 true 2016-05-25 00:00 2016-05-26 00:00 20180510 10:54

Father's Day 2016 78901 02 true 2016-03-18 00:00 2016-03-19 00:00 20180510 10:54

_images/customer_transaction.png
Transactions Points transfers

Document number

1379048216872
1379048216872

1379048216872

LL TRANSACTIONS

Document type

sell

sell

sell

Available rewards

Purchase date

2018-08-10

2018-08-10

2018-08-10

Redeemed rewards

poS

eCommerce 2

Offine store 1

Offdine store 1

Amount

795 PLN

1635 PLN

3165 PLN

Points earned

795

1635

3165

Actions

_images/customers_import.png
Import customers

XML file

_images/customers_in_level.png
Q) OPEN LOVALTY

Reverd campaigrs

Customers in level VIP

List of customers

Bernadecte

scoe

P p—

Smiham.

Johns

nicetygme com

RodiieniczhelgaBeampe et

wnader@esamplecom

wrconekeliQexamplenec

sondrine chomplinGesampie g

senevieve polichOexample.org

_images/customer_profitability.png
av: 500.86 EUR
Avo: 25493 EUR
Orders: 2

_images/customer_segments.png
Segments.

Birthday anniversary.
Customers loyal to 7 For All Mankind

One or more orders.

_images/customer_pos2.png
Assign POS

Select POS *

eCommerce 1

eCommerce 2

Offfine store 1

Offfine store 2

_images/customer_profile.png
Current level -
Loyalty card number -

user-temp@example.com

+48345345000
Profile details

First name: Jane

Lost name: Doe

Birth date: 1990.00-11
Gender: Male
Createdat: 2016.0808 1053
Store: DEFAULT

Show all profile details

Referral token

9FCM7298

Agreements

Legal agreement

Marketing agreement

Data processing agreement

Loyalty

Total carned points:
Active points:

Used points:
Expired paints:

Locked points:

Blocked points:

%) 20200724

LEVELCHANGE 1300:03

) 20200724

© Expired 100 points

POINTS TRANSFER 1233:45

) 20200724

© spent 100 points

POINTS TRANSFER 1233:45

) 20200724

LEVELCHANGE 1233:39

) 20200724

" arder "7829" nlaced

Transactions Points transfers

© Level changed from "levelo” to

© Level changed from "level1” to

2169
2169
100

Available rewards

Redeemed rewards

Profitability

av:
Avo:

Orders:

Referred customers

JEUR
300EUR
1

_images/bin.png

_images/button.png
Translations

_images/basic_rule.png
Add earning rule

Basic Information
Name *

Description *

Active Inactive

Type details

Type*

Activity of rule
All time active
Startat*

Endat*

POS

POS

_images/basic_segment.png
Add segment

Basic Information
Name *

Description

Active Inactive:

_images/campaign_categories.png
Q OPEN LOYALTY sccoun: @) sewne ¥

- Campaign categories

campaign categories

Levels

Points transfers
Name. ¢ Sortorder L Acwve ¢ Actions

Earning rules Invitation !

Material reward o
Virtual reward o

Showing 1p to 3 from 3 entries.

A Reward campaigns

Al reward campaigns

_images/campaign_categories2.png
Q OPEN LOYALTY sccoun: @) sewne ¥

= Campaign categories

campaign categories list

Points transfers

Name. © Sortorder L Active © Actions
Transactions
Earning rules Invitation 1

Material eward o e

Virtual reward o e

Showing 1p to 3 from 3 entries.

Reward campaigns

_images/buy_reward1.png
Buy Gift for birthday anniversary campaign for client

Emailor phone Find customer by e-mail or phone

Without spending points Users points will not be used

Quantity You can buy more coupons at once.

savE

_images/buy_reward2.png
Buy Percentage discount code campaign for client

Emailor phone ~ Find customer by e-mail or phone
Transaction document number - Find transaction by document
number

savE

_images/campaign_details.png
©orenLovary Campaign details

——
—
= B
e re——
How to use coupons?:)
= '
‘Brand description: ;
— —

More nformation ik :

Push notiicaton text: V.m
hctve:
Costinpoines: ‘
Revard valve: .
o :
Taxvalve: .
Yer
pubic: B
Brandicon: : =
Levels:
Limie .
Limit per customer: =
Coupon codes: E
Al ime visvle: -
Al ime scive: :mm
Activerom: mm” -
Activeto: 151235
Campaign photo: .

” ooz

_images/campaign_types.png
Campaign type

Gmesgnet E— .
Campalgn details e
o
Invtatontar s vt

Percenage iscount code >

_images/client.png
GETREWARDS EARN POINTS

Get rewards

AVAILABLE REWARDS

269

Levez e

My pra

My level

My transactions

My points

My rewards

Logout

(o
0l

&

oIl

oIl

GEO custom campaign

discount_nike

discount_reebok

discount_puma

_images/client_logout.png
You can check new rewards we preapared.

zesponts 1 evezieve © @

My profile
My level
My transactions

My points

Sell products, earn points —
and redeem rewards Lot

Loyalty program for partners and resellers

_images/category_basic2.png
Basic information details

Sort order *

Active

Inactive:

_images/change_translation_admin.png
Q OPEN LovAl

Points transfers

Trans:

Earning rul

Merchants

Translations

Translations list

Code (locale)

es
en
ol

Showing 1 up to 3 from 3 entries.

CREATE NEW TRANSLATIONS

i+ Name
spain
English

Polski

Updated at

20181105 11:

20181105 11:08

20181105 10:27

Default

No

Yes

No

'

Actions

sccount @)

—_.

_images/confirm_deletion.png
Delete confirmation X

Are you sure to delete this customer? You will not be

able to undo this operation.

_images/content.png
Template

Accent color

Css template

_images/company_and_address.png
Company

Address

Company Data

Company name*

Tax Identification Number *

Address

Street name

Building name

Flat/Unit name

Postal code

city

State/Province

Country

_images/condition_file.png
Congitons Fi (°DF) hicpiclent.openloyalty test.openloyakty o/#t/terms conditions

_images/controls.png
o @) swne X

Q OPEN LoYALTY

customers

List of customers

Polms ran Frstname. Lestname © phone L emai I Gender mhdwe Cemdm L Qv © Ao i Days from ast order I Comentlevel | Assigned manually I Acions
Transacions @

Jordan g s34 meclovgh ankisBeamplene femsle | 1S720417 201808262150 186000 EUR 185000 EUR. 1 Bl o No

oena Marks “oazssosoass seery@eamplens: mile 1703 20180250025 48500 EUR 50w 1 " T No

oanyie Wlsh <osooseazatosz naraliessgesamplenet fomale 15100 21610230111 5000 EUR 000 £ 1 o SR No

_images/category_basic.png
Add campaign category

Basic information (English)

Name *

Basic information (Polski)

Name

_images/customer_account.png
You can check new rewards we preapared.

2esponts V1 evezive @ | @

My profile
My level
My transactions

My points

Sell products, earn points —
and redeem rewards Lot

Loyalty program for partners and resellers

How to earn points?

_images/customer_activity.png
Loyalty Profitability

Total earned points: 1000 v 900 EUR
Active points: 1000 Avo: 45000 EUR
Used points: 600 Orders: 2

Expired points: o

Locked points: o

Blocked points: o

Transactions Points transfers Available rewards ~ Redeemed rewards

Document number Document type Purchase date PoS Amount Points earned
12001 Return 2019-12:03 Not set 600 EUR 600

1200 sell 2019-12:03 Not set 1200 EUR 1200

300 sell 2019-12:03 Not set 300 EUR 300

L TRANSACTIONS

_images/custom_event.png
Type details

Type *

Custom Event name*

Points *

Usage limit active

Period *

Limit *

Custom event rule

_images/custom_rule.png
Connect type * Geolocation earning rule v

Earning rule * | ~

_images/customer_deactivate_ok.png
Customer activation

Do you want to activate customer?

_images/customer_delete.png
Delete customer

You will not be able to undo this operation!

DELETE

_images/customer_anonymize.png
Anonymize customer

You will not be able to undo this operation

_images/customer_deactivate.png
Deactivate this customer?

This customer will be deactivated

_images/coupon_remove.png
Coupons

Coupon codes * 324141 X || 53453 X | 324X | 52 X

432 X

Removing used coupons (43242gdf) is not permitted

_images/cqrs.png
SERVER

OPEN LOYALTY

Domain

command Write API Model

Projector

u - - e

PostgreSQL

Elasticsearch

_images/customer_import_window.png
Import customers

XML file

_images/customer_labels.png
Labels

Value

ADD LABEL

_images/customer_grid.png
Account @) sertngs K

Customers

List of customers

L Days
FISt . lastname ! Phone B ! Genderl Birthdatd Createdat cv ! AVO I oOrders ™1 currentlevel I Store 1 Assigned L ions
name. last ‘manually
order
Not 2020.01-30 5000
Marek Kowalski Not set rmarekkowalski@example.com N 900.00 EUR 2 L LEVELGOLD STORECODEEUR Yes
isclosed 10:23 EUR
. ; . 2020.01-29
Jerzy Nowacki Not set jerzynowacki@example.com oo 0.00 EUR 000 ELR 0 Notset LEVELO - No
Marek K)l Not set kkowal @ I Not 202001:29 LD 550.00 2 L LEVELGOLD STORECODEEUR Ye
arel owal s marekkowal@examplecom hou o o o es
Marek Jurny Not set marekjurny@example.com 20200129 556 EUR 000 ELR 0O Notset LEVELO No

12

_images/customer_import_button.png
Customers

_images/customer_pos.png
Assigned POS

Name eCommercet

Description: sample POS

_images/customer_level.png
Current level

Name:
Condition value:
Reward code:

Reward value:

Special rewards:

Assigned manually:

Gold

_images/customer_merchant.png
Assigned Merchant

First name: John
Last name: Doe
Em merchant@openloyalty.io

_images/customer_edit.png
Q OPEN LOYALTY

Edit customer

Basic Information

Al customers

First name* John
Add customer
ferred custom Lastnames. Doe
Levels
Gender ® WMale O Female O Notdisclosed
Points transfers
Birth date 15009-11
Transactions
T Emaiix user@oloy.com
pos orone 45234234000
Merchants
Loyalty card number a7E3aazsas
Reward campaigns Lecels
Selectlevel levelt
SelectPOS

Select merchant

Company.

Adaress

_images/customer_edit2.png
(RPENLOYALTY

fomm Zena Renner

Customers

All customers

Add customer
Referred customers

Levels

e TR——

_images/customer_details.png
© open LovaLTy

Home.

@ Customer

Al customers

Add

ints transfers

Earning rul

B pos

AllPOS

Add POS

ward campaigns

Firstloyalty scheme

Jane Doe

Profile detail

Show all profile details

Referral token

Agreements

EDIT

Loyalty

Total earned points:
Active points:

Used points:
Expired points:
Locked points:
Blocked points:

Timeline ~ Transactions Points transfers

Pick events

%) 20200724

© Level changed from "level0” to "level2"
LEVEL CHANGE 13:00:03

) 20200724

© Expired 100 points
POINTS TRANSFER 123345 100

) 20200724

| Spent 100 points
POINTSTRANSFER 123345 100

) 20200724

© Level changed from "level1” to "level
LEVEL CHANGE 1233:39

) 20200724

Arder 728" nlared

Available rewards.

Profitability

av:
Avo:

Orders:

Redeemed rewards Referred customers.

recoure @) seunes K

nav.xhtml

 Table of Contents

 		
 Open Loyalty Documentation

_images/purchase_period.png
Segment parts

Purchase period o
YYYY-MM-DD HHimm
YYYY-MM-DD HHimm

_images/rabbitmq.png
BRabbitMQ. e sawns

Overview Connections Channels Exchanges m Admin
Queues
~ Al queues (17)
Paginaton
Page of 1 - Filer) Regex 2
Overview Messages Message rates 4
Name Features State Ready Unacked Total incoming deliver!get ack
coupon-dead-ietters ide o o
customer-dead-ietters ide o o
emal-deacetters ide o o
email-queue ide o o
expire-points-ransters ide o o
level-dead-ettrs ide o o
nolfy-expire-points-transfers D DLX LK. idie 0 0
point-transfer-dead-letters) idle 0 0
process-activating-coupon D DX DK idie 0 0
process-expiring-coupon D DX DK idle 0 0
processnew-campagn-avallable b DLX DLK- idie 0 0
recalculate-customers-level . - - idle 0 0
recreate-segment D DX DK idie 0 0
‘segment-dead-letters) idle 0 0
send-expire-coupor-notification b DLX LK idie 0 0
send-expire-level-notification b DLX LK. idle 0 0
unlockpoints-transfers ide o o

_images/qrcode.png
Type details

Type® QResde

Code *

Points *

Usage limit accive

Period *

Limic*

_images/redeemed_rewards.png
Transactions

Free delivery

Discount code

Gift

Points transfers

Costin points

Available rewards

Active

Active from

Redeemed rewards

Active to

2018-12-2710:33

Purchased at

2018-09-28 10:33

2018-09-28 10:33

2018-09-28 10:33

881

875

Example_coupon

Use of coupons count

_images/redeemed.png
© 0PN LovaLTy

Redeemed rewards

= Redeemed rewards list

JROpRe—

JROpRe—

Johndosossampiecom

rr—

T —

percntagsdiscoun code

Percentagediscount

Jom

Jom

Jom

Torpny

sewng: K

_images/referred_customers.png
© opeN LovaLTY

Referred customers list

Referred customers

Reterreria

00000000.0000-474c 605200BBOCDTe 1
0000000000474 605200dBBOCDTe 1
00000000.0000-474c 6052 0BBOCDTe

0000000000474 605200dBBOCDTe 1

Referrer Name

John Do
John Do
JohnDos.

John Do

Recipient 14

Novset
Novset
Novset

Novset

Recipent Name

Novset
Novset
Novset

Novset

Recipent Email

tesz@cloycom
tesa@dloycom
tesi@oloycom

tescsacloycom

e @ s X

_images/referral.png
Type details

Type *

Event name*

Reward*

Points *

Customer Referral

_images/remove.png

_images/referred_customers1.png
Timeline

Transactions

Recipient Name

Points transfers

Available rewards

Redeemed rewards Referred customers

Createdat

No data to display

Actions

_images/remove_merchant.png
Do you want to remove Merchant Account?

This action can not be undone.

_images/pos_logout.png
Open Loyalty

_images/pos_login.png
Login to your account

merchant@openloyalty.io

Keep me logged in

_images/pos_match.png
Open Loyalty c]

transactions
Match customer with transaction
Loyalty card number
Phone number
Document number v

SAVE

_images/pos_logout_icon.png

_images/pos_reward.png
Reward campaign list

Name

Gift for birthday anniversary
50 EUR coupon to use in off-line

store

Free delivery

Discount code reward

Active

All
time

All
time

All
time

All
time

Costin
points

50

20

20

Limit

10

10

Open Loyalty

campaign list

Limit per

Levels

customer

Gold VIP
1

Silver

Gold VIP
10

Silver

Gold VIP

Silver

Bronze

Bronze

Bronze

Segments

Birthday anniversary

Actions

_images/pos_register.png
Open Loyalty 2

customer registration

Basic Informations
First name *
Last name *
Gender ® Male Female
Birth date 2018-11-01
E-mail ¥
Phone

Loyalty Card Number

_images/pos_transactions.png
Open Loyalty c]

find transaction

Find transaction

Document number

_images/pos_rules.png
Open Loyalty

earning rules

Earning points rules list

Al
Name 1 Description 1 Actiie Startat Endat time I Type 1 Actions
active

Points after registration Customers earn 100 points after registration to loyalty program true true Event rule

Customers earn 1 point after spending 1 EUR for purchases registered in General
1EUR =1 point P pencing P 8 true true spending

loyalty program

rule
- . .) . General
Additional points for Customers earn 1 additional point after spending 1 EUR for purchases e 1612 20162 Sene
shopping on Black Friday registered in loyalty program during Black Friday 0201:00 0223:00 rzle s
Points ft hasii if)) 2018-05. 2018-07- Product
p:'j:jdm purchasing specific ¢\ stomers earn 500 points after purchasing product Pmtk000 (SKU) tue o atoens Tl PL‘::E:SE
Points for buyi if) . Product
oints for buying specific Customers earn 120 points after purchasing product Pmo000m (SKU) true true roduc

product purchase

_images/profile_details.png
Profile details

First name:
Last name:
Birth date:
Gender:

Created at:

ciry:

State/Province:

Street name
Building name:
Flat/Unit name:
Postal cade:

Country:

_images/product_purchase.png
Type details

Type® Product purchase -

skus

Points +

I st executed rule If selected all other earning rules (resolved after transaction) will be skipped

_images/loyalty_points.png
Loyalty

Total earned points:

Total points earned since last level recalculation:
Level will expire in:

Active points:

Used points:

Blocked points:

1000
900
1 days

980

_images/xdebug_2.png
Run/Debug Conflgurations

+ - B, " Name: localhost () share [] single instance only
1% PHP Remote Debug

" PHPURIt Filter debug connection by IDE key
Templates Server: localhost 5

IDE key(session id): PHPSESSION_1
» Pre-configuration

- Before launch: Activate tool window
+

[show this page I Activate tool window

B cncel Apply Help

_images/xdebug_1.png
Servers

+ - B ¥
Name: | localhost [shared
openloyalty.localhost Host Port Debugger
openloyaly.localhost 80 Xdebug -
Use path mappings (select if the server is remote or symlinks are used)
Absolute path on the server

File/Directory
Project files

/home/tjurczak/PhpstormProjects/open-loyalty

idea

.vagrant

backend var/www/openloyalty

docker

frontend

kubernetes

.gitignore

7] .gitlab-ciyml

7] travis.yml

i CHANGELOG.md

i CONTRIBUTING.md

i CONTRIBUTORS.md
LICENSE

B cncel Apply Help

_images/marketing_automation.png
Marketing Automation Tool

Choose integration® Disabled| N

SalesManago

_images/loyalty_transactions.png
Loyalty

Total earned points:
Active points:

Used points:
Expired points:
Locked points:

Blocked points:

_static/ajax-loader.gif

_images/match_customer_with_transaction.png
Match customer with transaction

XML file

IMPORT

_static/comment-close.png

_images/marketing_settings.png
Marketing Automation Tool

Choose integration® SalesManago

APIURLY

APl secrert

APl key*

Customer ID*

Email*

_static/comment-bright.png

_images/match_transaction.png
Match customer with transaction

E-mail or phone Find customer by e-mail o
phone

Documen: number Find transaction by document
number

_static/down-pressed.png

_images/match_customer_with_transaction_button.png
Transactions

_static/comment.png

_images/matching.png
Matching transaction with customer

Priority*

Field*

Priority*

Field*

Priority*

Field*

email

loyaltyCardNumber

phone

_images/match_transaction2.png
Match customer with transaction

E-mail or phone

Document number

jon

Jon75@example.net (+9363340294124)
Jones kayli@example.net (+2262286427804)
Gjones@example.com (+5876707228044)

SAVE

Find customer by e-mail or
phone.

Find transaction by document
number

_static/down.png

_images/logs_search1.png
© opEN LovauTy

Home

Custome

Levels

Points transfers

Transactions

Earning rules

Pos

Merchants

Segments

Reward campagr

Audit log list IR

Search criteria

Search from time period:

From 2020-07-06 14:12

Audit log 1D

4c448b11-58f1-4f6d-99ds-
a1516aefedoc

8f69df84-2a04-4348-
b0d7-973cab1bave4

a85e0ec6-6f0a-4599-abéb-
a9273d45ef03

0915139d-1e89-4820-91dd-
ds5222fa640d

4660c209-6694-4119-850f-
fdabs7031f0d

dbf68749-3706-474e-85b7-
23250369¢54

20425825-0484-4460-8927-
dcf838396e1f

5eb360d2-4ded-4fbf-
2242-2721d508277

d575ab8c-916f-41ac-99a5-
b36cat5dosdf

Created at

20200707
12552

20200707
12552

20200707
12552

20200707
12552

20200707
12552

20200707
12552

20200707
12552

20200707
12552

20200707
12552

To
4« n
sun | Mon

User ID 5 6
12 13
19 20

22200000-0000-474c-b092- 2% 27

b0dd880co7e2

22200000-0000-474c-b092- .
admin

b0dd880co7e2

22200000-0000-474c-b092- .
admin

b0dd880co7e2

22200000-0000-474c-b092- .
admin

b0dd880co7e2

22200000-0000-474c-b092- .
admin

b0dd880co7e2

22200000-0000-474c-b092- .
admin

b0dd880co7e2

22200000-0000-474c-b092- .
admin

b0dd880co7e2

22200000-0000-474c-b092- .
admin

b0dd880co7e2

22200000-0000-474c-b092- .
admin

b0dd880co7e2

July- 2020~ b

Tue Wed| Thu

14
2
2

1 2
)
5 16
2 »
2 3

Fi | sat

3 4

10 n

7 18

24 25

104222111

104222111

104222111

104222111

104222111

104222111

104222111

104222111

1500
1600
1700
1800
1900

User type.

admin

admin

admin

admin

admin

admin

admin

admin

admin

SEARCH

Event type

ViewCustomer

ViewCustomer

ViewCustomer

ViewCustomer

ViewCustomer

ViewCustomer

ViewCustomer

ViewCustomer

ViewCustomer

Entity type

customer

customer

customer

customer

customer

customer

customer

customer

customer

Entity ID

00000000-0000-474c-b092-
b0dd880co7f5

00000000-0000-224c-
b092-8cdd8s0co7al

00000000-0000-474c-b092-
b0dd880co7f3

22222222.0000-474c-5092-
b0dd880co7e2

00000000-0000-474c-b092-
b0dd880co7e1

00000000-0000-474c-b092-
b0dd880co7e2

22222222.0000-474c-b092-
b0dd880co7e1

00000000-0000-474c-b092-
b0dd880co7fa

11111111-0000-474c-b092-
b0dd880co7e1

Actions

_images/logs_filter1.png
© opEN LovauTy

Home

Customers

Levels

Points transfers

Transactions

Earning rules

Pos

Merchants

Segments

Reward campaigns

Audit log list RN N

Search criteria

Search from time period:

From 2020-07-06 14:12
Audit log ID Created at
80d1f9a2-ded8-4e0b-a6e5- 2020-07-07
7474345208 1416
'd42af428-cded-4491- 2020-07-07
:a9c0-8d436c92c551 14:16
b685dfd0-edba-464a-aea6- 2020-07-07
a15f82254831 14:16
773596cf-31ff-4238-95be- 2020-07-07
f424fd7dbbfa 14:16
07b323f1-97fc-45bc- 2020-07-07
bb95-440b1ceceasc 14:16
406d1fof-332f-4406-8fda- 2020-07-07
bbda27bb9205 14:10
f3eadac7-fag0-4f%-af5a- 2020-07-07
f840d172a2cd 12:02
d2fod418-fca8-44b1- 2020-07-07
b90c-455917883831 12:02
067f1a48-48f8-4dfe- 2020-07-07
a705-9ac214c37b92 11:48

Showing 1 up to 9 from 9 entries.

To

User ID

'22200000-0000-474¢-b092-
b0dd880co7e2

'22200000-0000-474¢-b092-
b0dd880co7e2

'22200000-0000-474¢-b092-
b0dd880co7e2

'22200000-0000-474¢-b092-
b0dd880co7e2

'22200000-0000-474¢-b092-
b0dd880co7e2

'22200000-0000-474¢-b092-
b0dd880co7e2

'22200000-0000-474¢-b092-
b0dd880co7e2

'22200000-0000-474¢-b092-
b0dd880co7e2

'22200000-0000-474¢-b092-
b0dd880co7e2

Username

admin

admin

admin

admin

admin

admin

admin

admin

admin

104222111

104222111

104222111

104222111

104222111

104222111

104222111

104222111

104222111

User type

admin

admin

admin

admin

admin

admin

admin

admin

admin

SEARCH

Event type

Audit

AuditLogviewed

AuditLogViewed

AuditLogviewed

AuditLogViewed

AuditLogviewed

AuditLogViewed

AuditLogviewed

AuditLogViewed

AuditLogviewed

Entity type

system

system

system

system

system

system

system

system

system

Entity ID Actions

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Not set

Not set

_images/workspace.png
Points transf

[—

PR ——

Merchants

[——

Customers

List of customers

David

Tony.

Monique

Stefan

Last name.

cust

Metz

Johns.

Mahr

Shoving 1up 1o 20 fom 525 entries.

ADD CUSTOMER

Phone. 1

Search/Filter

T4B89646315T4

“a878110672247

+6670607855754

Email

openloyalcustomer@arfeenme male

leolaosgexample.org

theatheote@examplenet

abbeyds@example.net

 Gendér

s
0703

1968,

female 1265

1961

male
2z

1986

mle 1%

Created,

0803
070629

610
Tazss

80z
031038

612
01626

Sort

av

1019600 USD

953500 USD

881500 USD

876000 USD

avo

145657 USD.

317833 UsD

203833 USD

252000 USD

ontes 1 DM
7 2

3 EY

3 w

3 B

_images/transfer_details.png
Details

Expiresac Mmars 290726

_images/levels.png
Q) OPEN LOYALTY

Home.

¥ customers

® Levels

All level

Add level

Points transf

Transactions

Earning rules

POS

Merchants

Segments

ward campaigns

Levels

Levels list

levelo
levell
level2
level3
levelo-storeEU

levelgold

LEVEL

Description
example level
example level
example level
example level
example level in store

Not set

Showing 1 up to 6 from 6 entries.

Not set

Not set

Not set

Not set

EUR_STORE

storecodeeur

Condition value

200

999

555

Reward name

test reward

test reward

test reward

Highest level reward

test reward

re

Reward code

levelo-prize

abc

abc

level3-prize

levelo-store-prize

«d

1

Reward value |

0.00%

5.00%

10.00%

15.00%

0.00%

5.00%

Minordervalue | Customers Active |

Not set

Not set

Not set

Not set

Not set

Not set

Account @) setungs 3

Special rewards Actions.

Not set

Not set

Not set
Not set

Not set

_images/unlink.png

_images/level_edit.png
Edit level4

Basic Information (English)
Name * evelt

Description example leveld

Basic Information (Polish)

Reward details
Active Active
Condition value * 400

Min order value

Reward name * 50
Reward value * 50
Reward code * 50

Special reward details

_images/translation.png
scours @ sears K

) OPEN LOYALTY

Translations

Translations list

Customers

Levels

Points transfers

Code (locale) © Name © Updatedat 1 Defoult T Actions
Transactions

en English 201810081334 Yes
Earning rules

pl Polish 20181008 13:42 No

pos
Showing 1 up t 2 from 2 entries.
Merchants

Segments

Reward campaigns

_images/login_page.png
Sell products, earn points and redeem rewards

Loyalty program for partners and resellers

en Loyal

lty. All ights reserver

E-mail

or register a new account

Forgot password?

_images/users.png
© open LovaLTY

Admins [E3

Admins list
Name surname
Not set Not set
Not set Not set
Not set Not set
Earning rule: Showing 1up to 3 from 3 entries.

Reward campaigns

admin@example.com

admin_reporter@example.com

supervisor@example.com

Active

Yes

Yes

Yes

recours @) setings 3

Configuration
Admins
AcL

Translations

Stores
External

Emails
No Auditlog
No
No

_images/locked_points.png
Points are never locked

Points will be locked for*

_images/used_reward.png
Use of coupons count

v

_images/logo2.png
Q OPEN LOYALTY

Bglogo
Q) OPEN LOYALTY

Smarioge

Q OPEN LOYALTY

Heroimage

_images/webhook_notification.png
Days before expiring points to noty user 0
[ays]

_images/logo.png
ccount @) setings K

Q OPEN LOYALTY

Home Ml Settings

_images/view.png

_images/logs1.png
© OPEN LOYALTY Firstloyalty scheme Account @) settmgs I

Audit og st IEEIREEEN I

Levels Search criteria

Points tra
Search from time period:

From To SEARC

Transactions

Earning rules

Pos

Merchants

Audit log 1D Createdat User D Username " User type. Event type Entity type Entity ID Actions
Segments
4ca48b11-581-4f6d-99d5- 2020-07-07 22200000-0000-474c-b092- . ; . 00000000-0000-474¢-b092-
Reward campaign admin 10422211 admin ViewCustomer customer
a1516aefedoc 12:52 bodd8goco7e2 b0dd880co7Fs
8f69df84-aa04-4348- 2020-07-07 22200000-0000-474c-b092- . . . 00000000-0000-224c-
admin 104222111 admin ViewCustomer customer
b0d7-973ca61bases 12:52 bodd8goco7e2 b092-8cdd880c07a1
‘a85e0ec-69a-4599-abeb- 2020-07-07 22200000-0000-474c-b092- . ; . 00000000-0000-474¢-b092-
admin 10422211 admin ViewCustomer customer
29273d45ef03 12:52 bodd8goco7e2 b0dd880co7F3
0915139d-1e89-4820-91dd- 2020-07-07 22200000-0000-474c-b092- . . . 22222222-0000-474¢-5092-
admin 104222111 admin ViewCustomer customer
ds5222fa640d 12:52 bodd8goco7e2 b0dd880co7e2
4660c299-6694-4119-850F- 2020-07-07 22200000-0000-474c-b092- . ; . 00000000-0000-474¢-b092-
admin 10422211 admin ViewCustomer customer
fdabs7031fod 12:52 bodd8goco7e2 b0ddggoco7et
dbf68749-3706-474e-85b7- 2020-07-07 22200000-0000-474c-b092- . . . 00000000-0000-474¢-b092-
admin 104222111 admin ViewCustomer customer

23a50369¢54 12552 b0dd880c07e2 b0dd880co7e2

_images/webhooks.png
Webhooks

Webhooks Enable webhooks
R g hutpsi/example.com/webhook php
Request header name. g Content-Acme-Key

Request header value

_images/logout.png
accoune @) sengs ¥

Home Dashboard

Customers
8 Logout

_images/webhook_notification2.png
Days before expiring coupons to notify user. 1 days]

_images/invitation.png
© opeN LovaLTY

Jrmm—

Poins ransters

Transa

Eaming

Referred customers list

Referred customers

Reterreria

00000000.0000-474c 605200BBOCDTe 1
0000000000474 605200dBBOCDTe 1
00000000.0000-474c 6052 0BBOCDTe

0000000000474 605200dBBOCDTe 1

John Do

John Do
JohnDos.

John Do

Recipient 14

Novset
Novset
Novset

Novset

Recipent Name

Novset
Novset
Novset

Novset

Recipent Email

tesz@cloycom
tesa@dloycom
tesi@oloycom

tescsacloycom

o @) swne X

_images/transfer_deleted.png
e

spancing

e

spancing

e

spancing

e

e

spancing

spancing

Value.

s

Comment

0.coupon: 359

‘Bample comment

ezt

Mete2s1239

et 1238

et 1237

et 1236

e0e2s0801

Metesorsz

Mmetes0ze

met27 1217

etezr1zn

Loyaley card number

s

s

s

s

Notset

Notset

Notset

s

Notset

Notset

Notset

Notset

Notset

Notset

Notset

Notset

Notset

oy 88l
i 8|8 8|8 8 8

_images/instant_reward.png
Reward campaign

Reward campaign®

SAVE

cashback

configured campaign

discount_nike

discount_puma

_images/transfer.png
sccours @) sexings K

Q OPEN LOYALTY

e Points transfers

¥ Customers

Points transfers list
Levels

* Points transfers

First name. ¢ Lastname ¢ phone ¢ Emal ¢ st © Type ¢ Value Comment Createdat . Loyaltycardnumbet POS © lIssue Actions
Al points transfers
o= John Do +48234234000 user@oloy.com active spending 200 201808291230 47834433524 Notset admin
Earning rules
John Do +48234234000 user@oloy.com active adding 100 201808201238 47834433524 Notset admin
pos
John Do +48234234000 user@oloy.com active spending 500 test 201808291237 47834433524 Notset admin
Merchants
John Do +48234234000 user@oloy.com active adding 1000 test 201808201236 47834433524 Notset admin
e By Test not set ely.tester@gmail.com active spending 500 201808290801 Notset Notset admin
By Test not set ely.tester@gmail.com active adding 1000 201808290752 Notset Notset admin
John1 Doet +48456456000 user-1@oloy.com active adding 35 201808290242 Notset Notset admin
John Do +48234234000 user@oloy.com active spending 1 0, coupon: 399 2018.0827 1217 47834433524 Notset system
Jane Doe 48345345000 user-temp@oloy.com active spending 100 Example comment 201808271211 0000 Notset system
John Do +48234234000 user@oloy.com active adding 69 Generalspendingrule-23 201808271211 47834433524 Notset system
John Do +48234234000 user@oloy.com active adding 10 Event-FirstPurchase-10 201808271211 47834433524 Notset system
Jane Doe 48345345000 user-temp@aloy.com active adding 10 Event-FirstPurchase-10 201808271211 0000 Notset system
Jane Doe 48345345000 user-temp@oloy.com active adding 100 2018.08241211 0000 Notset system
Jane Doe 48345345000 user-temp@aloy.com expired adding 100 201807291211 0000 Notset system

Jane Doe 48345345000 user-temp@oloy.com expired adding 100 201807291211 0000 Notset system

_images/last_purchase.png
Segment parts

Type *

Days*

Last purchase was n days ago

_images/pagination.png
2 3 45 6 7 . 17

_images/permissions.png
Access * v

Resource * v

Query filter (optional) Regex filter for URL request (ex. /A\/api\/campaign\/bought$/)

_images/permanent_token_setting.png
Add user

Create user
e A
prane
e [res—
soiker 123456709

_images/points_transfers.png
sare @) S X

Q OPEN LoYALTY

= Points transfers IRl sl

Points transferslist

Frstname. Lestname © phone L emai s T oTme ¢ Vel Comment Createdse L Loyatycardrumber 1 905 L e 1 Acions
Ladrivs Zemiak “074ea995665 a5gesample.com e aaang S0 1ER=1pan Mmecen072s Novset Oftinesre1 | system
Ladrivs Zemiak “07aea995665 I05gerample.com e aaang £ TEUR=Tpoint mecen072s Novszt Commerce2 system
Ladrivs Zemiak “074ea995665 a5gesample.com e aaang B Ponesfor frst purchase Mmecen072s Novset Notset spstem
Lamar Jocoti EECt =N damionsagexamplenet e aaang B Ponesfor frst purchase mecen072s Novszt Notset system
Herminia sncarson “orezscaessiz0 2yanamarquardt@esamplenet e aaang 00 TEUR=1poine Mmecen072s Novset Oftinesre1 | system

Revard campaigns.

Lamar Jocoti EECt =N damionsagexamplenet e aaang 0 TER=1point mecen072s Novszt Oftiesre1 | system
steon Hoeger nsazsames tes3@esample com e aaang 210 1ER=1pam Mmecen072s Novset Oftinesre1 | system
Herminia sncarson “orszsnsessizn aysnamarquardtgesamplenet e aaang B Ponesfor frst purchase mecen072s Novszt Notset system
Herminia sncarson “orezscaessiz0 2yanamarquardt@esamplenet e aaang 200 1ER=1pain Mmecen072s Novset Oftinesre1 | system
steon Hosger sazsames ies3erample.com e aaang w5 1ER=1pan mecen072s Novszt Oftiesre1 | system
steon Hoeger nsazsames tes3@esample com e aaang B Ponesfor frst purchase Mmecen072s Novset Notset spstem
Rachlle Stroman aasteses2t rentaugoramplenet e aaang 0 1ER=1psint mecen072s Novszt Oftiesre1 | system
Rachelle Stroman aasteses2t rent aufEeramplenee e aaang 0 TER=1point Mmecen072s Novset Oftinesre1 | system
Rachlle Stroman aasteses2t rentaugoramplenet e aaang B Ponesfor frst purchase mecen072s Novszt Notset system
Joren ot “aaTTuassanses seberigoampleorg e aaang 0S5 1EUR=1point Mmecen072s Novset Oftinesre1 | system
Taria Hahn “oazsssTTe sehulisigeampleorg e aaang 35 1ER=1pan mecen072s Novszt Oftiesre1 | system
Taria Hahn “oazsssTTe schulsigeampleorg e aaang B Ponesfor frst purchase Mmecen072s Novset Notset spstem
Now Durgan zeenzams blancasagempleors e aaang 3 1ER= 1 mecen072s Novszt Oftiesre1 | system
Joren ot “aaTTuassanses seberigoampleorg e aaang 255 1ER=1pan Mmecen072s Novset Oftinesre1 | system
Jorst Jost “oaTTuassanses seberigoampleorg e aaang B Ponesfor frst purchase mecen072s Novszt Notset system

_images/points_import.png
Import points transfers

XML file

IMPORT

_images/pos2.png
Q) OPEN LOYALTY

Home

Customers

Levels

Points transfers

Transa

Earning rules

B ros

AllPOs

Add POS

Merchants

Segments

Reward campaigns

POS list

Name

Offine store 2

eCommerce 1

eCommerce 2

Offine store 1

Showing 1 up to 4 from 4 entries.

Description

sample POS

sample POS

Sample on-line POS

sample POS

Identifier

france_1

us_online_1

ecommerce2

post

Localization

city

city

city

city

reont @

1

Actions

settngs 3

_images/pos.png
Open Loyalty

Match transaction & . .
Find customer Reward campaigns
customer

Register Customer Find transaction Earning Points Rules

_images/pos_customer.png
Open Loyalty

find customer

Identify customer
Loyalty card number
Phone number
E-mail address
First name
Lastname
city

Post code

FIND CUSTOMER

_images/pos_cockpit.png
Open Loyalty

Match transaction & . .
Find customer Reward campaigns

customer

Register Customer Find transaction Earning Points Rules

_images/pos_details.png
Localiza

City: Ciry

State/Province: Washington

Street name:
Building name:

Postal cade:

Country:

Latitude: 51.1170364

Longitude: 17.020395¢

_static/file.png

_images/mode.png
Level downgrade settings

Vose auomad

every xnumber of days

_static/plus.png

_images/merchant.png
Q OPEN LOYALTY

@ Home

Levels

Points transfers

Transactions

Earning rules

pos

B Merchants

Allmerchants

Add merchant

Reward campaigns

Merchants

= Merchants list

First name. 1

John

Uber

John2

Showing 1p to 3 from 3 entries.

Last name

Doe

Doe2

Phone.

~ag123123123

Notset

38123123124

john@doe.com

xoo@gmail.com

john2@doe2.com

PosID

00000000-0000-474¢-1111-b0dd8B0C07e2

00000000-0000-474¢-1111-b0dd8B0C07e3

00000000-0000-474¢-1111-b0dd8B0C07e3

POS name

test2

testt

testt

Pos ity

Wroctaw

Warszawa

Warszawa

pecoure @) sewess K

Actions.

_static/minus.png

_images/multiply_labels.png
Type details

Type®

Label muttiplers

Is last executed rue

Multiply eared points by product labels v

Value

Muidplier +

If selected all other earning rules (resolved after transaction) will be skipped

_static/up-pressed.png

_images/multiply.png
Type details

Type* Multiply earned points ~

skus

Multipler *

I st executed rule If selected all other earning rules (resolved after transaction) will be skipped

_images/my_points.png
My profile

My level

My transactions

My points

My rewards

Logout

Active points: 100
Used points: 0
Expired points: 0

Locked points: 0

DATE AND TIME

31-01-2020 08:57

31-01-2020 08:57

31-01-2020 08:57

31-01-2020 08:53

GET REWARDS

My account

OPERATION

Points from rule "General spending rule - 1*
Points canceled due to a refund

Points from rule "General spending rule - 1*

Points from rule "Event - Account Created - 100°

earnpoNTs | 100 POiTs Ty Levewo vl @ | @

EXPIRATION DATE

01-03-2020 23559

31-01-2020 08:57

01-03-2020 23559

01-03-2020 23559

POINTS WILL BE
LOCKED UNTIL

31-01-2020 08:57

31-01-2020 08:57

31-01-2020 08:57

31-01-2020 08:53

My profile

My level

My transactions

My points

My rewards

Logout

NUMBER OF
POINTS

5

100

_images/my_level.png
My profile

My level

My transactions

My points

My rewards

Logout

My level

Current level: levelo
Transactions value: 0 EUR
Transactions value for the next level: 20 EUR

Next level: levell

LeveL LEVEL DESCRIPTION
levelo example level
levelo-

example level in store
storeEU v
levell example level
level2 example level

level3 example level

GET REWARDS

My account

EARN POINTS

100 poiTs Yo teveo tevel © @

My transactions

My points

My rewards

Logout

AVAILABLE FROM

OEUR

OEUR

20 EUR

200 EUR

999 EUR

_static/up.png

_images/my_rewards.png
GETREWARDS EARN POINTS

Get rewards

AVAILABLE REWARDS

oIl

&

oIl

&

oIl

Gift_book

Free_delivery

Invitation_for_match

269

LEVELO

(=]

My profile

My level

My transactions
My points

My rewards

Logout

_images/my_profile.png
GETREWARDS EARNPONTS | 269 pONTs 7y | LeveLo el © | @

My profile.

My account Mylevel

My transactions
My points.
My profie My profile My rewaras
My level Logout
My transactions N
John
My points.
Last name*
My rewards
Doe
Logout
Emai

user@example.com

Phons numbsr
+48234234000

Dateof bith
1990-09-11

O Female © Male

Address information B
Company details
Terms and conditions

8 1 accept terms and conditions. *

O 1 want to receive special offers, | accept the terms of the newsletter

O 1accept all marketing agreements.

_images/overview.png
ADMIN CLIENT POS
COCKPIT COCKPIT COCKPIT

COMPONENTS

_images/my_transactions.png
My profile

My level

My transactions

My points.

My rewards

Logout

Transactions page

DATE AND TIME
03-12-201912:59
03-12-201912:59

03-12-201912:59

GETREWARDS EARN POINTS

My account

TRANSACTION NUMBER

15

3001

VALUE

15EUR

300 EUR

150 EUR

NUMBER OF POINTS

5

300

100 POINTS Y

TveE

sell

sell

Return

o0 @ | @

My profile
My level

My transactions
My points

My rewards

Logout

_images/menu.png
Q OPEN LOYALTY

Home

Customers

Levels

Points transfers

Transactions

Earning rules

Dashboard

Active points

4717

Issued points

4818.8

Account e Settings X

Burned poin

100

Configuration
Admins

ACL
Translations
Stores

Emails

Audit log

_images/download.png

_images/segment_labels_value.png
Segment parts

Type *

Key*

Value *

ADD LABEL

Customers have such labels values

_images/segment_labels.png
Customer who has such labels

ADDLABEL

_images/edit.png

_images/segment_product_labels.png
Segment parts

Type*

Value *

ADDLABEL

Bought products with labels

_images/earning_rules.png
© oPEN LovaLTY Accoure @) sexings K

o Earning rules

Customers

Earning rules list
Points transfers
Transacions Name I Description 1 Active T serta ! Endat T Type T Actions
O Emt >
e Event - First Purchase - 10 sth 01912291235 202002291235 Eventrule
Add earning rue Event-First Purchase - 12 s 201912201235 202002291235 Eventrule
pos Muicpl sth 01912291235 202002291235 Matiply earmed points
i Newsletter subscription test rule sth 2019-12-29 12:35 2020-02-29 12:35 Event rule
amens Facebook like test rule sth 2019-12-2912:35. 20200229 12:35. Custom event rule
ward campigs
General spending rue lmited to the POS sth 1912291235 202002291235 General spending rule
Custom event - test event - 8 - limited to POS sth 01912291235 202002291235 Custom event rule
Instant reward testrule sth Isal time active Isall ime active Instant reward
Geo location test rule sth Isall ime active Isall ime active Geolocation
Product purchase earning rule - 120 sth 1912291235 202002291235 Product purchase.
Qr Code carning rule sth Isall ime active Isall ime active QReode
General spending rule with segment sth Isal time active Isall ime active General spending rule
Event - Account Created - 100 sth Isall ime active Isall ime active Eventrule
General spending rule sth x Isal time active Isall ime active General spending rule

Showing 1 up to 14 from 14 entries.

_images/segment_pos.png
Segment parts

Type* Bought in specific POS o

Choose POS *

eCommerce 2 Off-line store 1

= eCommerce 1 = Off-line store 2

_images/edit_email.png
© opeN LovaLTY

ome Edit email

susjecr

Sencrrama®

Eaming ules
Sencer i+

et Varasi
Comare

PREVEW

—

open@oloycom

open@oloycom

1 e o/ o e < sy

s e

fr=c

G e s
e S e ———

1 e o/ o e < 90 >

_images/segment_type.png
Segment parts

Type*

Bought specific brands

Anniversary

Average transaction value

Bought in specific POS

Bought products with labels

Bought specific brands

_images/edit2.png

_images/segment_sku.png
Segment parts

Type* Bought specific SKU

€5~ SKU123 X

_images/dashboard_graph2.png
tsued poits I3 =0

7000
6000 -
5000

4000
3000
2000

_images/screen.png
© open Lovaury

Home

Customers

Levels

Points transfers

Transactions

Earning rules

POS

Merchants

Segments

Reward campaigns

Dashboard

Active points

7206

Expired points

100

Members without transaction

8

last day last week last month

1 1 1

New members

1

lastyear

1

Issued points

7306.9

Pending points

0

Members (total)

12

last day last week last month last year

1 1 1 1

All stores
Burned points
100
Spending (total)
Transactions (matched)
6
lastday last week tast morch laseyear
5 5 5 5

_images/dashboard_graph1.png
New members

_images/rules.png
Q OPEN LOYALTY

@ Home
Customers
Levels
Points transfers
Transactions

@ Eamingrul

Allcarning rules

Add earning rule

mpaigns

Earning rules

Earning rules list

Name.

Event - First Purchase - 10

Event - First Purchase - 12

Product purchase earning rule - 120

Multiplier 2

Event - Account Created - 100

General spending rule - 2.3

Newsletter subscription test rule

Facebook ke test rule

General spending rule limited to the POS

Custom event - test event - 88 - limited to POS

Instant reward test rule.

Uber

Instarewards

Showing 1up to 13 from 13 entres.

Description

sth

sth

sth

sth

sth

sth

sth

sth

sth

sth

sth

1 Point per s

what the heck s this?

Startat

2018.07:27 1211

2018.07:27 1211

2018.07:27 1211

2018.07:27 1211

2018.07:27 1211

2018.07:27 1211

2018.07:27 1211

2018.07:27 1211

2018.07:27 1211

2018.07:27 1211

2018.07:27 1211

s alltime active:

s alltime active:

Endat

2018.09.27 12:11

2018.09.27 12:11

2018.09.27 12:11

2018.09.27 12:11

2018.09.27 12:11

2018.09.27 12:11

2018.09.27 12:11

2018.09.27 12:11

2018.09.27 12:11

2018.09.27 12:11

2018.09.27 12:11

s alltime active:

s alltime active:

sccours @) sexings K

Type Actions.

Event rule

Eventrule

Product purchase.

Multiply earned points.

Event rule

General spending rule

Event rule

Custom event rule

General spending rule

Custom event rule

Instant reward

Instant reward

Instant reward

_images/dashboard_graph4.png

_images/segment_brands.png
Segment parts

Type* Bought specific brands

Brands * Example X

_images/dashboard_graph3.png
Burned points
100
%
L

40

20

_images/segment.png
© open LovaLTY

Points trans

Transactio

ning ru

Merchants

Segments

jard campaig

Segments

Segments list

Name

New customer from specific POS

Black Friday off-line customers

Birthday anniversary

Registration anniversary

Purchase period

©One or more orders

Description

Customers who registered and bought in off-line store

Customers who bought something during Black Friday in off-line stores

Show customers with less than 10 days to birthday

Customers with registration anniversary in 5 days

Show customers with purchases in November

Customers who bought anything

Customers:

1

299

Avg. trans. amount

0EUR

39125EUR

203.06 EUR

12432 EUR

0EUR

7.81 EUR

Avg. trans

05

018

Avg.CLV

0EUR

782.5 EUR

609.17 EUR

248.64 EUR

0EUR

7.81 EUR

Createdat *

2019-11-24 14:43

2019-11-24 14:43

2019-11-24 14:43

2019-11-24 14:43

2019-11-24 14:43

2019-11-24 14:43

account @)

Active

'

Actions

setings

_images/downgrade.png
Level downgrade settings

Downgrade every

Downgrade based on

‘every x number of days M

‘esrned points since last level change

‘earned points within last X days

days

_images/dashboard_graph5.png
Expired and expiring points

400
350

10

20 |

20 L

™

0

M

o

o IS IS & ’L»’b w;‘ w;ﬁ@ 3 ’V@ ’)S?

IS A §

1
o

& o S oS
3 o

_images/segment_custom_customer.png
Segment parts

Comom aamer iz

e
Cosomars lue gernoléGeramoleorg
onoranasss)
b coopergeample com
prreiet ey
emarcus22gesampleorg

=y

_images/activation_code.png
O, | sMsAlert

9.05

OpenLoyalty activation code (no. 1):

253007
20945

1601

_images/activation_mail.png
OpenlLoyalty

Activate account

Thank you for registration. Please activate an account to login.

ACTIVATE ACCOUNT

_images/actions.png
© OPEN LOYALTY Account @) settmgs I

Customers

Customers

Lev List of customers

Points transfers

. ' Days
Transactions First from Assignec
! Lastname 1 Phone D Email ! Gender! Birthdate! Createdat CLV | AVO | Orders! ! Ccurrentlevel I Store Bned tions
name. last manually
Earning rules order
pos
Merchants M : : D : v v
Segments = = R
vard campaigns
.) . 20200129
Jerzy Nowacki Not set jerzynowacki@example.com oo 0.00 EUR 000 EUR O Notset LEVELO = No
Not 20200129
Marek Kowal Not set marekkowal@example.com . 0.0 EUR 000 EUR O Notset LEVELGOLD STORECODEEUR Yes
disclosed 12:56
) 20200129
Marek Jurny Not set marekjurny@example.com poons 0.00 EUR 000 EUR 0 Notset LEVELO — No

_images/activation.png
Account activation method

Account activation method* email

_images/active.png
Active

_images/account_summary.png
John Doe e

Cormentlevei-
Loyatey card number -

useroloy.com
a0

_images/rule_photo.png
Earning rule photo

Earning rule photo

_images/customers_menu.png
Customers

List of customers

First

Jerzy

Marek

Marek

Jerzy

Jane

1 Lastname

Nowacki

Kowal

Jurny

Kowalski

Doe

ADD CUSTOMER

1 Phone

Not set

Not set

Not set

Not set

IMPORT

1 E-mail 1

jerzynowacki@example.com

‘marekkowal@example.com

marekjurny@example.com

kowalski@example.com

user-temp@example.com

Gender

Not

Not
disclosed

Not
disclosed

Male

Birth datel

1990-09-11

1

Created at

20200129
1326

20200129
12:56

20200129
12:53

20200129
12:37

20160808
10:53

av 1

0.00 EUR

0.00 EUR

0.00 EUR

260,255.00
EUR

3.00 EUR

Ao 1

0.00 EUR

0.00 EUR

0.00 EUR

3717929
EUR

3.00 EUR

Orders!

Days
from
last
order

Not set

Not set

Not set

Current level |

LEVELO

LEVELGOLD

LEVELO

LEVEL3.

LEVEL2

store

STORECODEEUR

Assigned,

manually

No

Yes

No

No

No

Actions

_images/rule_segment.png
Target

Targettype Segment

Segments *

_images/customers_in_segment.png
ccore @) swene X

© oPEN LovaLTY

Customers in segment Big spenders

List of customers

Poins ransters Frstname. Lestname © phone L emai I Gender T Ehdate Createdac Actions
Transacions
Eaming Joramie MeLaughin o7aTaazsEs Jovier emmerichesamplenet female 15620505 Wer2091437
= Jenniter Wasica s vandervor dasiaGerample org female 2000108 Wer2071828
Merchares Jordan g s34 mecullough farkieGerample net female 15720017 ece262150
» Segmenss Byana Schutise st Tl gibsonGerample.net female 151023 610050315
o Vincenzo Schmeicer “sTssaass usrackegerampleorg male 15600218 et
P e “avo0z213299574 il et Gexample com female tsss1102 Wmet2u0ms
Revard campigns
Comyte Moe <oossezzassszs <parisianesamplecom female 15730213 Wet270e18
Bemie g “sseansnzsizss arizsaeampleors male 1sa41018 Wmer028022
ooy oss “tizsassost ‘hammesgeramplenet female 15840830 ece020702
Gerarde Barclecs aszaTasaasnse rubye oberbrumnerBexample com female 15630503 ece030r3
e Haley esstzz abemathy banca@example com male 15620701 a0
sl Turcote “osastsTOsE2t ontizocsgesamplecom male 2010828 e00sss2
el Stacke <cTssanaasest 2 grahomeamplenet female 1ses1121 Wern030417
Rebean Colier “osasesaetess dangeloz2examplecom female 15600531 808291306
Reily Eehmann “ssosTasT0eTS aorsssgemplence female 15850525 enanzs
Eenors Ko oamsseesTTTS chartesTogeramplenet male 15530225 Mecs0s031s
s - msTzzIneas ninas1geamplecrg female 15640419 We10170839
noe Mohe TasaseTO0sSS waietichgempleorg male 15830303 Wer0132200
a2 Boe “auseasessese milar0gerample et male 15630509 ece1s0103
Jorrod Lusiviz eamrszssnans boshmEesamplecom male 15910310 008012206

_images/rule_pos.png
eCommerce 2

Offline store 1

Off-line store 2

_images/dashboard.png
Dashboard Allstores

Active points Issued points Burned points

7651 8216.9 179

Expired points Pending points Spending (total)

795 0 -

Members without transaction Members (total) Transactions (matched)

15 20 9

lastday last week last month lastyear laseday last week last month lastyear lastday last week tast morch laseyear

4 8 8 8 4 9 9 9 0 5 8 8

_images/rule_updating.png
Q) OPEN LOYALTY

Home Edit earning rules

Customers
Basic Information

Levels
Name *
Points transfers
Transactions Description *
@ Eaming rules
Active
All earning rules
Add earning rule
Type details
pos
Merchants Type*
EERES Event name*
Reward campaigns
Points *
Activity of rule

Al time active

POS

Points after registration

Customers earn 100 points after registration
toloyalty program

Active v
Account created v
100

v

_images/customers_rewards.png
ccoune @) sewne X

© opeN LovaLTY

Home Users in campaign 50 EUR coupon to use in off-line store

List of customers

Frstname. Lastname Phone Eomsil Gender Birhdste Createdse Actions
Loy Kospp s aciemegeamplenet female 15871225 Wer2061225
Jomi i “assosaTsss0 deckowlsgeampleors male 15730719 2e0807 1136
Boby Ratke “asassisnaast iiana sikclausgecmple com female 15650508 Wet061953
Roger Kok, anzmeses pasqualenadergeamplecom male 15860717 2808130306
Laura Kotler ammresses douga2geramplenet male 2070812 Weae13 2

A Revard campaigns.
Marspall Murray “aossaseznzs nedratageampleorg female 2040827 etz

Alreward campaig
et uicn “sat00s02719 mitano.ckestegeamplecom female 1560510 etz

Addrovard campaign

I Stene Zeme asaTstes0 chvist22Gerample com female 15610415 et
Heen Jocoti “s2ERSTTS caoodvingerample.ors male 15720330 et 1613
oceane Terry “orsrsssorse boscodimicigeamplenet female pee a5z
Joshua Widerman nsssteamezs el ceclegerample o male 15870128 Werz120810
Easer Madhurse szt “oaysigeampiecrs female 2020325 Wer2030618
Garee Lakin TETIOSTI runcerongerample.org male 1s810408 Mmetezr 2220
s Auer “asssianasoes bsanfordgeramplenet female 15840507 Wer2011225
Ramons Hestheo “srseee1se Koss emil@esamplecom male 15630720 ece82150
Ryiegh Ruecker TeTEISE uauieyGerample com female 15500503 e es2
Berand Murrsy ommnaiozess fernandos7@eramplenet male 1521208 meca01 17
Jomet Jones “ostescsisaess laiaBsgomplenst male 15501129 et ies
sime Sids oo Kevon hegmann@ecmplecrg male 12 ez

s Baumbsch mmanaro astyssgeampleorg male 15640422 Wer0110

_images/rule_types.png
Type details

Type *

Activity of rule

Alltime active

Staratt

Endact

Customer Referral
Event rule

General spending rule

Multiply earned points o

YYYY-MM-DD HH:mm

_images/reward_report.png
Redeemed rewards report
Dseom VPYVAMDD Hitmm

Dses VPYVAMDD Hitmm

DOWNLORD REFORT

_images/reward_photo.png
Campaign photo

Add photo

ADD PHOTO

Campaign photos

_images/reward_visibility.png
Alltime visible.

Visible From *

Visible To *

Reward campaign is always visible to customers

_images/reward_target.png
Target

Targetype Level

Levels *

_images/rule_level.png
Target

Targettype Level

Levels *

_images/role_edit.png
Basic Information

Name * Customer Service
Permissions
Access * View v
R Points transfers v
Query filter (optional) Regex filter for URL request (ex. /A\/api\/campaign\/boughts/)
Access * View o
Resource * Transactions v
Query filter (optional) Regex filter for URL request (ex. /A\/api\/campaign\/boughts/)
Access * View o
Resource * Levels v
Query filter (optional) Regex filter for URL request (ex. /A\/api\/campaign\/boughts/)
Access * Modify “
R Customers v

Query filter (optional) Regex filter for URL request (ex. /A\/api\/campaign\/boughts/)

_images/icon.png
%

_images/transaction_details.png
Transaction details.

Emait

Loyaity card umber:

Postal code:

Purchase date:
Document number:

[—

POSame:

Dorisn erfoated Oxtord

il Carigan

Cometia St

angela Wirap ress

Jockiyn Christansen

ry—

Kevin o

sz

Meas 21602

somasssoes

Oftine sore 1

Grossvlue Labets

20ER promarionNewprocct

T2E0R promationNewprocct

R prometionBefors histmas sale

aseUR promationNewprocct

Grmusthave

Gabrea Hearst

Grmusthave

Grmusthave

_images/transaction_count.png
Segment parts

Transaction count

_images/identification_factors.png
© opeN LovaLTY

Matching transaction with customer

@ Home
Customers Priorty* 1
Leveis
Fild® email
Points ransfers
Priorty* 2
Fild® loaltyCardNumber
[E—p———
Priorty* 3
Fild* phone

_images/transaction_labels.png
Edit transaction labels

Labels

Key*

Value *

SAVE

_images/icon_logout.png
(=]

My profile
My level

My transactions
My points

My rewards

Logout

_images/transaction_import_button.png
Transactions

_images/import_transaction.png
Import transactions

XML fle

IMPORT

_images/transaction_value.png
Segment parts

Transaction value

_images/import_points.png
Import points transfers

XML file

IMPORT

_images/transaction_pos.png
Segment parts

Type* Transaction percentin POS

POS*

Percent*

_images/instant.png
Type details

Type Instant reward M~

Is last executed rule f selected all other earning rules (resolved after transaction) will be skipped

_images/transactions2.png
Transactions

= Transactions list

Document number

ey
P
Ry
eassess50s00
61056085675
asasTa0zzns
asaTa0zze
asasTa0zzns
TaasasagTse
TaasasaTse
TaasasagTse

TasEssOs

0ezzesz
0ezzes2
ssisteonz
ssistonz

ss9a0500705

[——

T Loyaleycard number

stoz7ses
stoz7ses

stoz7ses

15305001

2570759
axazsst
axazsst
axazsst
221756
221756
2samasm
2s7am

21640416

Emai

feeney moshegesample net

feeney meshegerample net

feeney moshegesample net

Sberbrunner szequieigoampleorg

bufora27Geramplenst

ipeatyBomplenst

Ibeatty@examplenst

ipeatyBomplenst

sipesgoamplecrg

sipesgoamplecrg

sipesgoamplecrg

volkman@eramplecom

hschoen@example com

hschoen@example com

hschoen@example com

Kevon hegmann@ecmplecrg

Kevon hegmann@ecmplecrg

Keysalrempeigeramplecom.

haysalempetgerample com

abbormiogoamplenee

seTrssasizs

seTrssaa2s

seTrssasa2e

QRERRSEEY

sTsasaTI2e

sz

sz

sz

TSRSy

aaTsonsssT

TSRSy

sssITTE

e e

e e

e e

nsTmonsn

oo

“pscamE

pscamE

ST

Document ype.

Purchase dste

Mete00429

Mete00429

Meten0429

Mmete2szsse

Mmete2s21s0

Meaa2s1515

Meta2s1515

Meaa2s1515

Me0e2s 1446

Me0a29 1446

Me0e2s 1446

a0 1135

We0e2s0531

e0e2s0531

We0e2s0531

e0250503

e0e2s0303

e02s0615

a0 20615

meaa 20105

Ofiinesore 1

Commerce2

Commerce2

Ofiinesore 1

Ofiine sore 1

Commerce2

Ofiine sore 1

Commerce2

Commerce2

Ofiinesore 1

Commerce2

Ofiinesore 1

Ofiine sore 1

Commerce2

Ofiine sore 1

Commerce2

Ofiine sore 1

Ofiinesore 1

Commerce2

Commerce2

aseR

16 ER

28R

moER

To4ER

mER

sER

28R

1800E0R

s0ER

1875 ER

195ER

m0ER

msER

2m0ER

2meR

20ER

R

maR

soER

e @ s X

_images/import_transaction2.png
Import transactions

XML fle

IMPORT

_images/transactions.png
Q) OPEN LOVALTY account @) setungs I

Transactions

= Transactions list

Points tran
Document number t Loyaltycardnumber t Email + phone + Documenttype Purchase date L store t pos | Amount + Actions
o
= = 8
s o)
&
3 20181101 222 ol@oy.com not set Sell 20200130 12:59 = tes2 3EUR
rchants
201811011023 222 ol@oy.com not set Return 2020-01-3012:59 - tes2 3EUR
789 sa2222 user-temp@example.com +48345345000 Sell 202001301259 = ~ 3ER
labels-test-transaction saztas222 user@example.com +48234234000 Sell 2020.01-30 12: - — oER
123 222 ol@oy.com +8043483344385 Sell 202001301259 = tes2 3EUR
999 saztas222 o@lo.com 123 Sell 2020.01-30 12: - ~ 3ER
Store-eu-transaction store123-11134 user-store@example.com 0000 Sell 2020-01-3012:59 EUR_STORE — SS0EUR
coupons-test-transaction saztas222 user-return@example.com 12312323123123123760 Sell 2020-01-3012:59 - —~ 1000EUR
345 sa2222 open@example.com +8043483344385 Sell 202001301259 = — 3ER
456 sa2222 user@example.com +48234234000 Sell 2020-01-3012:59 - ~ 3ER

‘Showing 1 up to 10 from 28 entries.

_images/generate_archive1.png
Archives

ENERATE A NEW ARCHIVE

Archive before 2020-07-01

Archived files available for download:

_images/tests_5.png
single instance only

© © Run/Debug Configurations
+ - mF 3 Name: |OpenLoyalty share
» @ PHP Remote Debug
v pHPURIE Test Runner
I EGEeies I Testscope: () Directory () Class () Method () Composite () Defined in the configuration file
» / Templates
V! Use alternative configuration file: | /home/colejarczyk/PhpstormProjects/open-loyalty/backend/phpunit.xml.dist &
Test Runner options: ()
o

Command Line
Interpreter options:

Custom working directory:

Environment variables: BOOTSTRAP_PHING_SETUP=1

~ Before launch: Activate tool window

+
There are no tasks to run before launch

Show this page [¥) Activate tool window

_images/general.png
Type details

Type* General spending rule: ~

Fontusiue * How many points customer can earn from 1 amount of currency

Excluded SKUs

Labels inclusion type: none -

Exclude defvery cost

Min order value Minimal order value required to earn points

I st executed rule If selected all other earning rules (resolved after transaction) will be skipped

_images/tests_4.png
© O settings
a
» Appearance & Behavior
Keymap
» Editor
Plugins
» Version Control
Directories
> Build, Execution, Deployment
¥ Languages & Frameworks
» Javascript
¥ PHP
> Debug
Servers
Composer

Code Sniffer
Mess Detector
Frameworks
Phing
Blade
Smarty
> Annotations
> symfony
> Schemas and DTDs
Markdown
Nodejs and NPM
Oro Platform
Restructured Text

Languages & Frameworks) PHP) Test Frameworks @ For current project,
+ -

Cliinterpreter: 4 (7.1,

1 Local (current project) P Remote PHP 7.1 (7.1.10)

Path mappings: | <Project root>/backend—/var/www/openloyalty
. Interpreter: TicketArena - Docker PHF

PHPUNit librar
. Interpreter: rma.localhost v

%) Use Composer autoloader () Path to phpunit.phar () Load from include path (PEAR)

var/www/openloyalty/vendor/autoload.php
© PHPUNit version:

Path to scrip!

.7.14

Test Runner
| Default configuration file: | /var/www/openloyalty/phpunit.xmldist

Default bootstrap file:

[+

_images/gift_email.png
Edit email

suear
Sencarrame

Senceremai®

[R—

e

PREVEW

open@aioycam

open@aioycam

((conpon_code 1) (1 costoms_rame 1) ({ customes lase pome 1) ({ costomes pbone rembes 1]

n

(1 costamer ety 1) ({ cueomes posead 11

[ETEPECE T PEEEC T EF S |

Ioocres sl PBLLE */AGE//00 RHTAL 1.8 SrasiSianal 68 s org ARSI |

s e
R R e comane s
e

oty spperenerensts

e
B —

SR e
)
PR
e g s

« I

e

_images/geolocation.png
Type details

Type *

Latitude *

Longitude *

Radius *

Points *

Usage limit active

Period *

Limit *

Geolocation

_images/timeline.png
Timeline ~ Transactions Points transfers Available rewards ~ Redeemed rewards Referred customers

Pick events

20200724

Level changed from "level0" to "level2"

LEVEL CHANGE 13:00:03

20200724

* Expired 100 points
POINTS TRANSFER 123345 100

20200724

. Spent 100 points
POINTS TRANSFER 123345 100

20200724

Level changed from "level1" to "level0"

LEVEL CHANGE 123339

20200724

Order "789" placed
TRANSACTION 123339 300EUR 789

20200724

Earned 6.9 points from "General spending rule - 2.3, Instant reward test rule"
| POINTSTRANSFER 123339 69

20200724

Earned 10 points from "Event - First Purchase - 1
POINTSTRANSFER 12:3333 10

20200724

Earned 100 points from "Event - Account Created - 100"
POINTSTRANSFER 12:3322 100

_images/special_reward.png
ndition value

Min order value =

Reward name *

Reward value *

Reward code *

Special reward details

ADD SPECIAL REWARD

Level photo

Level photo

_images/email_preview.png
From "open@oloy.com"” <open@oloy.com>
Subject OpenLoyalty - new points
To "user@oloy.com” <user@oloy.com>

OpenLoyalty

New points

Congratulations! You have eamed new points: 12

Currently you have 118.9 active points.

VISIT ON-LINE STORE

_images/statuses.png
Customer earning and spending statuses

Customer earning statuses* active X || blocked X | new X
Customer spending statuses* active X || deleted X
blocked

new

_images/edit_translation.png
Ao @) semng K

) OPEN LOYALTY

Customers

Levels
Name * English
Points transfers #
Transac Order* o
Rs—
& Defaulc v
pos

Merchants
- adnis

<
S change_passuord”: {
"current™: "Current password”,

1
2
3

Segments 2

5 “do_not_match": "Passwords do not match”,

i

7

5

s

"new_first": "New pessuord",

ward campaigns "new second": "Repeat new passuord

n
- “dashboard™: {

10 "daily_registrations”: “Hew memvers”,

1 “heading": "Dashboard”,

12 "orders™: "Orders”,

13 “registrations_label™: "New members”,

13 "spending”: "Spending”,

15 “total_custoners_registered”: “Customers”,

16 “total_points_spent”: "Points spent"

17

18- atat: ¢

19 "basic™: "Basic information”,

20 “change_passuord”: "Change passuord”,

21 "Eait your account”

22 -
3 “Eomailn

SAVE

_images/special_reward_details.png
Special reward details

Active

Reward name *

Value *

Reward code *

Startat®

Endac*

Acive

Mother's Day 2016

2

89011

20160525

20160526

_images/event_sourcing.png
SERVER

OPEN LOYALTY

Event 1
Command
Event 2

Eventn

Event Store

cEEm mEr -

B - -

Read Store

_images/tests_1.png
© @ settings

Q- Build, Execution, Deployment
» Appearance & Behavior ::Dmer
Keymap
» Editor
Plugins
» Version Control
Directories
v Build, Execution, Deployment
» Debugger
> Deployment
Coverage
Covoeder
Registry
Tools
Required Plugins

> Languages & Frameworks
> Tools

» Docker

Name: | Docker

Connect to Docker daemon with:
) Unix socket
Docker Machine:

TCP socket

Engine API URL:

Certificates Folder:

Connection successful

_images/event.png
Type details

Type * Eventrule

Event name*

Points *

_images/template.png
Template

Accent color

Css template

Bigiogo

Smalllogo

Hero image

Hex color (#000000)

Q) OPEN LOYALTY

Q) OPEN LOYALTY

Q) OPEN LOYALTY

_images/forgot_password.png
Forgot password?

_images/tests_3.png
©@ settings

ar Languages & Frameworks > PHP For current project
» Appearance & Behavior PHPlanguage level: [7.1 (const visibility, nullables, multiple exceptions)
Keymap CLlinterpreter: Remote PHP 7.1 (7.1.10)
» Editor
Path mappings: <Project root>/backend—/var/www/openloyalty

Plugins

_images/export.png
Redeemed rewards

_images/tests_2.png
+ - B
Name: Remote PHP7 Visible only for this project
Remote PHP 7 e O ly. Proj
Remote
() Vagrant () Deployment configuration () SSH Credentials () Docker @ Docker Compose

Server: Docker v | New..

Configuration file(s): | ./docker/docker-compose.phpunit.yml

Service: php -

Environmentvaria.. COMPOSE_PROJECT_NAME=phpunit

General
PHP executable: | php s 0
© PHPversion: 7.1.19 Debugger: Xdebug 2.6.0

© Configuration file: /usr/local/etc/php/php.ini

Additional
Debugger extension:

Configuration options:
These optons will be passed usingthe " command lne opion

B cncel Apply Help

_images/edit_merchant.png
Q) OPEN LOYALTY

Home.

Edit merchant

Customers
= Merchant details
Points transf st name * John
Transactions
Lastname * Doe
Earning rules
Active Active
POS
B Merchants E-mail * john@doe.com
All merchants
Phone. +48123123123

Add merchant

password #ere (Change password)

Segments

* eCommerce2
ward campaigns Pos

Allow to add a new transfer points

SAVE

_images/sign_client.png
Sell products, earn points and redeem o
rewards

Password

o register a new account

Loyalty program for partners and resellers

Forgot password?

©2018 Loyalty Program. Allrights reserved. Terms and conditions

_images/edit_email2.png
Home .
Edit message

Customers

Levels

Points trans
Target* Customers -
Transactions
Channel * SMs. v
Earning rules
s Event* Customer registered and awaits activation v
Merchants cnsbled
Segments
Subject
Reward campaigns
Variables

1 {{ program_name 1} activation code (no. {{ code_number }}): {{ code 3}
Content *

SAVE

_images/settings.png
Settings

Settings
Timezone* Warsaw
Program name* Loyalty Program
Program URL
Conditions URL

Conditions File (PDF)

FAQURL
Points singular* point
Points plural* Points
Help e-mail
Expire points method After X days.
Points will expire after 30
v
Points are never locked
v
Returns
3 v
Allow users to edit their profiles
Days before expiring points to notify 10
user
Days before expiring coupons to 10
notify user
Days before level recalculation to 10
notify user
Levels will be calculated with* transactions

Delivery costs

SKUS excluded from levels

_images/edit_segment.png
© opeN LovaLTY

e Edit segment

Basic Information

Leve

Name

e

Segment parts

et

e

Vaer

Crimas g shospers

Comamers uno o srocum i e
S y

sane .

Bougheproducs v latels

promerion

forchiscmas presenc

e @ s X

_images/sign_link.png
English v

_images/edit_pos.png
recourt @) seaings 3

Q) OPEN LOYALTY

Home Edit POS

Customers
Basic Information

Levels
Name * Offine store 2
Points transfers
Transactions Description Sample POS
p
Earning rules
dentfier * france.1
B ros
Alpos
Localization
Addpos
Merchants Street name * Street
Segments Building name * 0

Reward campaigns
Flat/Unit name

Postal code * 12345
city * city

State/Province* paris

Country * France "

Latitude 511170364

_images/sign_in.png
Login to your account

dmin

_images/edit_store.png
Edit code

Basic Information
Code
Currency
Name

Active

SAVE

code

store

Active

_images/add_category_button.png
Campaign categories

_images/add_customer.png
Add customer
Basic nformation
-

Lastramer

s

i

Loyaty ardrumber

Laoete

Seicziael “

Selecp0s. .

Selct marchans .

Selcestore .

Company.

Legalagreemence

Markeing agrssmers

s prossseingsgresment

Avatar

_images/add.png
) OPEN LOYALTY

Customers

Levels

Points transfers

Transactions

Earning rules

Segments

ward campaigns

New translations

Code (locale) =
Name *
Order*
Default

Content*

SAVE

S
a5
8o

"agmin®: {
“change_password™: {
current™: "Current passuord”,
‘do_not_matcn”: "Passuords do not match”,
new_first": “New passuord
new_second”: "Repeat new passuord”

L
“dashboard”:
‘Gaily_registrations
“Dashboard"

‘Order:

New members”,

New members”,

Spending”: "Spending”,
‘total_customers_registered”
‘total_points_spent”: "Points spent”

: "Basic information”,
change_password”: "Change password”,
nav": "Edit your account”

‘Customers”,

secovrs @)

s M

powered by ace

_images/add_category.png
) OPEN LOYALTY

Customers

Levels

Points transfers

Transacti

Earning rules

pos

Merchants

Segments

A Reward campaigns

All reward campaigr

Add reward campaign

Redeemed rewards

All campaign categories

Add campaign category

Basic information (English)

Name *

Basic information (Polish)

Name

Basic information

Sortorder* 0

Active Inactive

SAVE

secovrs @)

s M

_images/add_level_button.png
Q) OPEN LOYALTY

Home

Customers

® Levels

Alllevels.

Levels

Levels list

Name |

Description

_images/add_merchant.png
Q) OPEN LOYALTY

Home

Customers

Levels

Points transfers

Transactions

Earning rules

Pos

B3 Merchants

All merchants

Add merchant

Segments

Reward campaigns

Add merchant

Merchant details
First name *
Lastname *

Active
Email *
Phone
password *
Pos *

Allow to add a new transfer points

SAVE

Inactive

reont @

settngs 3

_images/add_customer_button.png
© open Lovauty

Jrp—

Customers

Tist of customers

_images/add_level.png
) OPEN LOYALTY First loyalty scheme ~ « account e sectnes 3¢

Home

Add level

Customers
— Basic Information (English)
Points transfers

Name *
prm——

Description

Earning rules

Pos
Basic Informa

Merchants
Fa— Reward details

Reward campaigns

Active Inactive v
Condition value * >
Min order value >

Reward name *

Reward value * >

Reward code *

Special reward details

Level photo

Level photo

SAVE

_images/add_merchant_button.png
©Q OPEN LOYAI

Merchants

Customers
= Merchants list
Levels
Points transfers
Transactions
Earning rules
Pos
B8 Merchants
All merchants

Segments

Reward campaigns

_images/add_merchant_form.png
Add merchant

Merchant details
First name *
Lastname *
Active Inactive
Email *
Phone
password *
Pos *

Allow to add a new transfer points

SAVE

_images/add_pos.png
Q) OPEN LOYALTY

Home

Customers

Levels

Points transfers

Transa

Earning rules

B ros

AllPOs

Add POS

Merchants

Segments

Reward campaigns

Add POS

Basic Information
Name *

Description

Identifier *

Localization
Streetname *
Building name *
Flat/Unit name
Postal code *
city *
State/Province *

Country *

sccount @)

settings 3K

_images/add_reward_button.png
Home Reward campaign

Customers

Reward campaign list

Levels

Points transfers

Name. 1 Active I Campaign type
Transactions

Earning points rules

Pos

Merchants

Segments

A Reward campaigns.

All reward campaigns.

Add reward campai

Redeemed rewards

_images/add_rule.png
hcours @) sesngs K

© OPEN LOYALTY

Add earning rule

Customers
Basic Information

Levels
Name *
Points transfers
—— Description *
p
@ Earning ru
scave Inactve .
Al earning rules
[p—
Type details
pos
Merchants Type* v
Segments
Reward campaigns Activity of rule

Alltime active

Staratt

Endact

_images/add_pos_button.png
© OPEN LOYALTY

POS

Customers
POS ligf
Levels

Points transfers

Transactions

Earning rules

B ros

All POS

_images/add_reward.png
orentonry Add reward campaign

Campaign type

Compaign e ERme—

Basic Information (English)

Name®

Sporedescrpion —
°

Constion deserpon -
°

oo use coupons? P
°

Brandrame.

Branc cescrprion -

_images/add_segment_button.png
© opeN LovaLTY

e Segments

_images/add_store.png
© open LovauTy

e Add store

Customers

Levels Basic Information

Points transfers

Currency*
Code *

Earning rules
Name *

POS

Merchants Active Active

Segments

Reward campaigns

_images/add_rule_button.png
Q) OPEN LOYALTY

Home Earning rules

Customers
Earning rules list

Levels
Points transfers

Name ! Description
Transactions

@ Earning rules

All earning rules

Add earning rule.

_images/add_segment.png
o
Add segment

Basic Information

Name
Points transfers
Tra Descripsion
z
Earning rules
seive Inactive -
pos
Segment parts
® segments
Al segments.
Add segment Typer Average transaction value -
[—
Min value =
Max value™

_images/add_transfer.png
Points transfer

Transfer ype * Spend points

Select cu:

Points to add/spend *

Comment

_images/add_transfer2.png
Points transfer

Jssesmpre s
Serssares nesiop e re 208
Soresemsecon ST

_images/add_transfer_button.png
Points transfers

_images/admin_edition.png
© open LovauTy

Home.

Edit admin

Customers

All customers Editing admin

Add customer

Name
Referred customers
Surname
Levels
Roles*
Points transfers
Transactions Phone
Earning rules
Email

PoS

Merchants

Segments

Reward campaigns

Super admin

admin@example.com

_images/admin_profile.png
Q OPEN LOYALTY sccont @) sengs K

Home Admin profile Zm;ywmum

ustomers
a Logour

Basicinformation Change password

Points transfers

Firstname
Transactions

Lestname
Earning rules

Phone

Emaiis admin@oloy.com

[———
= SAVE

_images/add_user2.png
© opeN LovALTY

Home

Add admin

Customer:
— Create admin
Points tran
Name
Transactions
Surname
Earning rules
Active
pos
Merchants Roles*
Segments
Phone
Reward campaigns
E-mail*
External
Password*
Notifications enabled

SAVE

_images/admin.png
Q) OPEN LOYALTY

Home.

Customers

Transactions

Earning rules

POS

Merchants

Segments

ward campaigns

Marek Kowal

Profile details

First name:
Last name:
Birth date:
Gender:

Created at:

Store:

‘Show all profile detai

Agreements

v

EDIT

Loyalty Profitability
Total earned points: v

Active points: Avo:

Used points: Orders:
Expired points:

Locked points:

Blocked points:

Transactions Points transfers Available rewards ~ Redeemed rewards

Document number Document type Purchase date poS

No data to display

LL TRANSACTIONS

Amount.

Points earned

Account @) sertngs K

Actions

_images/all_customers.png
Account @) setungs 3

Customers

List of customers

i Days
FISt 3 lastname 1 Phone D Email ! Gender! mirthdate! Createdat CW 1 AVO | orderss "™ currentlevel ! Store o Assigned - ions
name last manually
order
Jer Nowacki Not set jerzynowacki@example.com " 20200129 4,00 R 000 EUR 0 Notset LEVELO No
= b > disclosed 1326 .
Not 20200129
Marek Kowal Not set marekowal@example.com 000 ELR OO0 EUR 0 Notset LEVELGOLD STORECODEEUR Yes
disclosed 12:56
) Not 20200129
Marek Jurny Not set marekjurny@example.com 000ELR OO0 EUR 0O Notset LEVELO = No

disclosed 12:53

_images/all_levels.png
Q) OPEN LOYALTY

Home

¥ custome

Al customers

Add customer

rred customers

® Levels

All levels

Add level

Points transfers

Transactions

Earning rules

Pos

Merchants

Segments

Reward campaigns

Firstloyalty scheme ~ ~

Levels

Levels list

Name 1

level3.
level2
levell

levelo

LEVEL

Description | Condition value
example level 999

example level 200

example level 20

example level 0

Showing 1 up to 4 from 4 entries.

1

Reward name

Highest level reward

test reward

test reward

test reward

Reward code

level3-prize

abc

abc

levelo-prize

Reward value

15.00%

10.00%

5.00%

0.00%

1

Minordervalue | Customers

Not set

Not set

Not set

Not set

sccoure @) setines 3

special rewards Actions

Not set

Not set

Not set

_images/agreements.png
Agreements

Legal agreement*

Marketing agreement

Data processing agreement

_images/agreements_ok.png
Agreements

V| Legal agreement

Marketing agreement

Data processing agreement

_images/reward_details.png
campaign details

Name:
Compaign type:

Shore description:
More information in:
Condition description:
Brand descripton:
Costin poines:

Reward value:

Tox:

Toxvalue:

Active:

Levels:

Limie:

Limit per customer:

Coupon cod

How to use coupons?:
Al time visible:

Al time active:

Free delivery
free._delivery_code

Sample free delivery reward

Terms and conditions of reward.
Sample brand description
20

100

Active

God || WP || Bronze || Siver

10

10

Instructions how to use coupon
true

true

it

_images/reward_category.png
Festured

Public

_images/reward_limit.png
Limit

Use of the coupon code is not limited

Single Coupon

Limit *

Limit per customer *

Customers could use coupon codes without limits

_images/reward_label.png
Labels
Key*

Value *

ADDLABEL

_images/resources.png
Information

Name Super admin
Permissions
Access *
Resource *
Query filter

SAVE

ACL

Admins

Audit

Customers

Dashboard

_images/reset_points.png
Level downgrade settings

Mode every x number of days

Downgrade every 365

Downgrade based on active points

_images/return_points.png
Points transfers

Points transfers list

First name

John

John

John

John

Cielo

Cielo

Cielo

Cielo

Destin

Last name.

Doe.

Doe.

Doe.

Doe.

Christiansen

Christiansen

Christiansen

Christiansen

McKenzie

ADD TRANSFER IMPORT

1 Phone 1

+48234234000
+48234234000
+48234234000
+48234234000
+6600661834869
+6600661834869
+6600661834869
+6600661834869

+8803624295461

Email 1

user@oloy.com

user@oloy.com

user@oloy.com

user@oloy.com

tierraleuschke@example.com

tierraleuschke@example.com

tierraleuschke@example.com

tierraleuschke@example.com

nicola.nikolaus@example.net

Staté

active

active

active

active

active

active

active

active

active

Type!

adding

adding

adding

adding

adding

adding

adding

adding

adding

Value

2550

50

1486

750

2770

Comment

Points after check-in

Points after check-in

Points after check-in

1 EUR=1 point

Points for first purchase

1 EUR=1 point

1 EUR=1 point

1 EUR=1 point

Created at

2018.07-04
10:29

2018.07-04
10:29

2018.07-04
00:35

2018.07-04
00:19

2018.07-04
09:18

2018.07-04
00:18

2018.07-04
09:18

2018.07-04
00:18

2018.07-04
09:18

Loyalty card
number

Notset

Notset

Notset

Notset

Notset

Notset

Notset

Notset

Notset

hccoun: @)

pos 1

Notset

Notset

Notset

Notset

Offline
store 1

Notset

eCommerce

Offline
store 1

eCommerce

system

system

system

Sevings 3

Actions

_images/return.png
Transactions

= Transactions

Document number

arsgsmamess

arsosmamess

aravsmamess

367425935105

1912454228854

1912464228854

1912464228854

[P—

© Loyaley card number.

23107

23107

23107

73074036

ooz

ooz

o0z

P—

Email

kuhlman.abbyBexample.net

kuhlman.abbyBexsmple net

Kubiman.abbyBexsmple net

King cale@example.org

dominique boyergexample.com

dominigue boyergexample.com

dominigue.boyergexample.com

e T et e

Phone

3121661946013

3121661946013

3121661946013

m2m2e0ssas

+18%057581610

+18907581610

+6189057581610

T ——

Sel

Sen

Seil

o

Purchaze date

201807032236

201807032236

201807032236

20180703 1608

01807030826

01807030826

201807030826

Sota070 191

eCommerce2

eCommerce2

Offine store 1

eCommerce 2

Offline store 1

eCommerce 2

eCommerce2

e 3

Py)

1826 EUR
1395 EUR
SSOEUR
ss0EuR
2880 EUR
1060 EUR
arseur

PR

sensz ¥

_images/reward_activity.png
Activity

Alltime active Reward campaign is not limited by time

Active from *

Aciveto®

_images/reward.png
© oen Lovairy

Reward campaigns

Reward campaign list

Test configured campaign
Testreward campaign
Testreward campaign
cashback

Percentage discount code.
Percentage discount code.
Percentage discount code.
Inactive

GEO custom campaign.

Showing 1up 109 from g entries.

ADD REWARD CAMPAIGN

+ Campaigntype s
Discount code
Discount code
Discount code
Casmback

Percentage discount code

Percentage discount code.

Percentage discount code

Discount code

Custom campsign

Costin points 3

w0

Limit

0

Unlimited

0

Unlimited

0

Limit per customer

Unlimited

Unlimited

Used by customers

Coupons count

Active from

20160101 00:00

20160101 00:00

20160101 00:00

Active to

2037-01-01 00:00

20370101 00:00

2037-01-01 00:00

Fulfiliment tracking process 3 Customers

-

Created at

20200129 1259

20200129 1259

20200129 1259

20200129 1259

20200129 1259

20200129 1259

20200129 1259

20200129 1259

20200129 1259

:

Actions

seanss K

_images/reward_brand.png
Brand info

Brand icon UPLOAD

_images/anniversary.png
Segment parts

Type *

Type *

Days*

Anniversary

_images/anonymization_confirmation.png
Anonymization confirmation X

Are you sure to anonymize this customer? You will not
be able to undo this operation.

_images/all_pos.png
Q) OPEN LOYALTY Account @) settings K

@ Home
pos

Customers

Lev POS list
Points tran:
Name 1 1 identifier 1 1 Actions
Transactions
Earning rules
test2 test post parodaw
B pos
testt test pos2 Warszawa

‘Showing 1 up to 2 from 2 entries.

Merchants

Segments

Reward campaigns

_images/available_reward.png
Transactions Points transfers Available rewards ~ Redeemed rewards

Name Active Costin points Limit Limit per customer Active from Active to Actions
Free delivery true 20 10 10 Is all time active Is all time active
Invitation for the event true 100 5 1 Is all time active Is all time active
Second product for 1 EUR true 50 10 2 Is all time active Is all time active

L REWARD CAMPAIGNS

_images/average_transaction.png
Segment parts

Type* Aversge wransaction value

Min value *

Max value*

_images/api.png
Campaign v
GET /api/campaignCategory/{campaignCategory} Method will retum category details -
lis | /api/campaignCategory/{campaignCategory} Edit campaign category. 8
GET /api/campaignCategory Method will retum complete list of campaign categories. -

/api/campaignCategory Method allows to create new category. -

/api/campaignCategory/{campaignCategory}/active Method allows to activate or deactivate campaign category. -
GET /api/campaign/{campaign}/brand icon Get campaign brand icon -

/api/campaign/{campaign}/brand icon Add or update campaign's brand icon -

/api/campaign/{campaign}/brand icon Remove brand icon from campaign -

/api/customer/campaign/cashback/redeem Redeem cashback by customer themsehes &

/api/campaign/cashback/callback/ {provider} Cashback provider callback Data needed is provider-dependent a

/api/admin/campaign/cashback/redeem Redeem cashback. a

_images/assign.png

_images/basic_pos.png
Add POS

Basic Information
Name *

Description

Identifier *

_images/basic_customer.png
Add customer

Basic Information

First name*

Last name*

) Not disclosed

Gender O mMale O Female

Birth date

Email*

Phone

Loyalty card number

Labels

Select level

Select POS

Select merchant

Select store

Company

Address

_images/basic_level.png
Add level

Basic Information (English)
Name®

Description

Basic Information (Polski)

Basic Information

Selcz e

Reward detalls

Congtionvaue ™
[a——
Revardrame®
p—

Revaracose®

Special reward details

Level photo

Levelproco

_images/remove_segment.png
Do you want to delete selected segment? X

This operation can not be undone.

_images/resend.png
Resend code

Phone number

RESEND ACTIVATION CODE CANCEL

_images/remove_transfer.png
Confirmation X

Do you want to delete transfer?

